Skip to main content

A library to report Google CloudML Engine HyperTune metrics.

Project description

Helper Functions for CloudML Engine Hypertune Services.

pypi versions

Prerequisites

Installation

Install via pip:

pip install cloudml-hypertune

Usage

import hypertune

hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
    hyperparameter_metric_tag='my_metric_tag',
    metric_value=0.987,
    global_step=1000)

By default, the metric entries will be stored to /tmp/hypertune/outout.metric in json format:

{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}

Licensing

  • Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
cloudml-hypertune-0.1.0.dev5.tar.gz (3.2 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page