Skip to main content

Create tabular synthetic data using copulas-based modeling.

Project description

This repository is part of The Synthetic Data Vault Project, a project from DataCebo.

Development Status PyPi Shield Downloads Unit Tests Coverage Status Slack


Overview

Copulas is a Python library for modeling multivariate distributions and sampling from them using copula functions. Given a table of numerical data, use Copulas to learn the distribution and generate new synthetic data following the same statistical properties.

Key Features:

  • Model multivariate data. Choose from a variety of univariate distributions and copulas – including Archimedian Copulas, Gaussian Copulas and Vine Copulas.

  • Compare real and synthetic data visually after building your model. Visualizations are available as 1D histograms, 2D scatterplots and 3D scatterplots.

  • Access & manipulate learned parameters. With complete access to the internals of the model, set or tune parameters to your choosing.

Install

Install the Copulas library using pip or conda.

pip install copulas
conda install -c conda-forge copulas

Usage

Get started using a demo dataset. This dataset contains 3 numerical columns.

from copulas.datasets import sample_trivariate_xyz

real_data = sample_trivariate_xyz()
real_data.head()

Model the data using a copula and use it to create synthetic data. The Copulas library offers many options including Gaussian Copula, Vine Copulas and Archimedian Copulas.

from copulas.multivariate import GaussianMultivariate

copula = GaussianMultivariate()
copula.fit(real_data)

synthetic_data = copula.sample(len(real_data))

Visualize the real and synthetic data side-by-side. Let's do this in 3D so see our full dataset.

from copulas.visualization import compare_3d

compare_3d(real_data, synthetic_data)

Quickstart

Tutorials

Click below to run the code yourself on a Colab Notebook and discover new features.

Tutorial Notebook

Community & Support

Learn more about Copulas library from our documentation site.

Questions or issues? Join our Slack channel to discuss more about Copulas and synthetic data. If you find a bug or have a feature request, you can also open an issue on our GitHub.

Interested in contributing to Copulas? Read our Contribution Guide to get started.

Credits

The Copulas open source project first started at the Data to AI Lab at MIT in 2018. Thank you to our team of contributors who have built and maintained the library over the years!

View Contributors




The Synthetic Data Vault Project was first created at MIT's Data to AI Lab in 2016. After 4 years of research and traction with enterprise, we created DataCebo in 2020 with the goal of growing the project. Today, DataCebo is the proud developer of SDV, the largest ecosystem for synthetic data generation & evaluation. It is home to multiple libraries that support synthetic data, including:

  • 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
  • 🧠 Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular, multi table and time series data.
  • 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data generation models.

Get started using the SDV package -- a fully integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries for specific needs.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

copulas-0.12.3.tar.gz (45.0 kB view details)

Uploaded Source

Built Distribution

copulas-0.12.3-py3-none-any.whl (52.7 kB view details)

Uploaded Python 3

File details

Details for the file copulas-0.12.3.tar.gz.

File metadata

  • Download URL: copulas-0.12.3.tar.gz
  • Upload date:
  • Size: 45.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for copulas-0.12.3.tar.gz
Algorithm Hash digest
SHA256 1894a2a089ebed1c63c866a5614a8caeac9f89269e3f3aa3f9bf6597469ada19
MD5 e09f7442a574e82fe951676584383ec0
BLAKE2b-256 a5baf06c9468d5471272e403108fbdc7492b31828f1796c966cc04bfee72a644

See more details on using hashes here.

File details

Details for the file copulas-0.12.3-py3-none-any.whl.

File metadata

  • Download URL: copulas-0.12.3-py3-none-any.whl
  • Upload date:
  • Size: 52.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for copulas-0.12.3-py3-none-any.whl
Algorithm Hash digest
SHA256 58a3363c217636968fa50b803d41a38506bfa99672a3574f650e97046531c5b2
MD5 e2d9e7f83b1d64ba191dfc0663b2d7ce
BLAKE2b-256 3fbce8ce3cc96dfa62243141697c7a170e029cf2f2dbdc5d634e90e25ca7f0d6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page