Skip to main content

A python library for building different types of copulas and using them for sampling.

Project description

“Copulas” An open source project from Data to AI Lab at MIT.

Copulas

Overview

A python library for building different types of copulas and using them for sampling.

Supported Copulas

Bivariate

  • Clayton
  • Frank
  • Gumbel

Accesible from copulas.bivariate.copulas.Copula

Multivariate

Accesible from copulas.multivariate.models.CopulaModel

Installation

Install with pip

The easiest way to install Copulas is using pip

pip install copulas

Install from sources

You can also clone the repository and install it from sources

git clone git@github.com:DAI-Lab/Copulas.git
cd Copulas
python setup.py install

Data Requirements

This package works under the assumption that the data is perfectly clean, that means that:

  • There are no missing values.
  • All values are numerical

Usage

In this library you can model univariate distributions and create copulas from a numeric dataset. For this example, we will use the iris dataset in the data folder.

Creating Univariate Distribution

First we will retrieve the data from the data folder and create a univariate distribution. For this example, we will create a normal distribution. First type the following commands on a python terminal.

>>> from copulas.univariate.gaussian import GaussianUnivariate
>>> import pandas as pd
>>> data = pd.read_csv('data/iris.data.csv')
>>> data.head()
   feature_01  feature_02  feature_03  feature_04
0         5.1         3.5         1.4         0.2
1         4.9         3.0         1.4         0.2
2         4.7         3.2         1.3         0.2
3         4.6         3.1         1.5         0.2
4         5.0         3.6         1.4         0.2

Once we have the data, we can pass it into the GaussianUnivariate class.

>>> feature1 = data['feature_01']
>>> gu = GaussianUnivariate()
>>> gu.fit(feature1)
>>> print(gu)
Distribution Type: Gaussian
Variable name: feature_01
Mean: 5.843333333333334
Standard deviation: 0.8253012917851409

Once you fit the distribution, you can get the pdf or cdf of data points and you can sample from the distribution.

>>> gu.probability_density(5)
0.2867858505472377
>>> gu.cumulative_distribution(5)
0.15342617720079227
>>> gu.sample(1)
array([6.14745446])

Creating a Gaussian Copula

When you have a numeric data table, you can also create a copula and use it to sample from the multivariate distribution. In this example, we will use a Gaussian Copula.

>>> from copulas.multivariate.gaussian import GaussianMultivariate
>>> gc = GaussianMultivariate()
>>> gc.fit(data)
>>> print(gc)
feature_01
===============
Distribution Type: Gaussian
Variable name: feature_01
Mean: 5.843333333333334
Standard deviation: 0.8253012917851409

feature_02
===============
Distribution Type: Gaussian
Variable name: feature_02
Mean: 3.0540000000000003
Standard deviation: 0.4321465800705435

feature_03
===============
Distribution Type: Gaussian
Variable name: feature_03
Mean: 3.758666666666666
Standard deviation: 1.7585291834055212

feature_04
===============
Distribution Type: Gaussian
Variable name: feature_04
Mean: 1.1986666666666668
Standard deviation: 0.7606126185881716

Covariance matrix:
[[ 1.26935536  0.64987728  0.94166734 ... -0.57458312 -0.14548004
  -0.43589371]
 [ 0.64987728  0.33302068  0.4849735  ... -0.29401609 -0.06772633
  -0.21867228]
 [ 0.94166734  0.4849735   0.72674568 ... -0.42778472 -0.04608618
  -0.27836438]
 ...
 [-0.57458312 -0.29401609 -0.42778472 ...  0.2708685   0.0786054
   0.19208669]
 [-0.14548004 -0.06772633 -0.04608618 ...  0.0786054   0.17668562
   0.14455133]
 [-0.43589371 -0.21867228 -0.27836438 ...  0.19208669  0.14455133
   0.22229033]]

Once you have fit the copula, you can sample from it.

gc.sample(5)
   feature_01  feature_02  feature_03  feature_04
0    5.529610    2.966947    3.162891    0.974260
1    5.708827    3.011078    3.407812    1.149803
2    4.623795    2.712284    1.283194    0.213796
3    5.952688    3.086259    4.088219    1.382523
4    5.360256    2.920929    2.844729    0.826919

History

0.2.1 - Vine serialization

  • Add serialization to Vine copulas.
  • Add distribution as argument for the Gaussian Copula.
  • Improve Bivariate Copulas code structure to remove code duplication.
  • Fix bug in Vine Copulas sampling: 'Edge' object has no attribute 'index'
  • Improve code documentation.
  • Improve code style and linting tools configuration.

0.2.0 - Unified API

  • New API for stats methods.
  • Standarize input and output to numpy.ndarray.
  • Increase unittest coverage to 90%.
  • Add methods to load/save copulas.
  • Improve Gaussian copula sampling accuracy.

0.1.1 - Minor Improvements

  • Different Copula types separated in subclasses
  • Extensive Unit Testing
  • More pythonic names in the public API.
  • Stop using third party elements that will be deprected soon.
  • Add methods to sample new data on bivariate copulas.
  • New KDE Univariate copula
  • Improved examples with additional demo data.

0.1.0 - First Release

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
copulas-0.2.1-py2.py3-none-any.whl (27.4 kB) Copy SHA256 hash SHA256 Wheel py2.py3
copulas-0.2.1.tar.gz (39.6 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page