Skip to main content

Python API of Dynamic Animation and Robotics Toolkit.

Project description

DART


DART: Dynamic Animation and Robotics Toolkit

DART (Dynamic Animation and Robotics Toolkit) is an open-source library that provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. Renowned for its accuracy and stability, DART utilizes generalized coordinates to represent articulated rigid body systems and employs Featherstone's Articulated Body Algorithm to compute motion dynamics.

Getting Started

DART provides both C++ and Python interfaces, which can be installed using various package managers. For cross-platform compatibility, we recommend using Conda or Pixi.

C++

Cross-Platform (Recommended)

Conda:

conda install -c conda-forge dartsim-cpp

Pixi:

pixi add dartsim-cpp

Linux

Ubuntu:

sudo apt install libdart-all-dev

Arch Linux:

yay -S libdart

FreeBSD:

pkg install dartsim

macOS (Homebrew)

brew install dartsim

Windows (Vcpkg)

vcpkg install dartsim:x64-windows

Python

For the Python interface, we recommend using Conda or Pixi. Note that the PyPI package is being deprecated to reduce maintenance—contributions are welcome!

Conda:

conda install -c conda-forge dartpy

Pixi:

pixi add dartpy

PyPI (deprecated):

pip install dartpy

Documentation

For more information on DART, please visit the DART documentation: English | 한국어 (WIP)

An overview of DART is also available on DeepWiki.

Project Status

Item Status
Build CI Ubuntu CI macOS CI Windows
Doc, Coverage, Linter API Documentation Documentation Status codecov Codacy Badge
Packages Packaging status Anaconda-Server Badge PyPI Version
Maintenance Average time to resolve an issue Percentage of issues still open

Citation

If you use DART in an academic publication, please consider citing this JOSS Paper [BibTeX]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dartpy-6.16.7-cp313-cp313-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.13Windows x86-64

dartpy-6.16.7-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

dartpy-6.16.7-cp313-cp313-macosx_15_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

dartpy-6.16.7-cp312-cp312-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.12Windows x86-64

dartpy-6.16.7-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

dartpy-6.16.7-cp312-cp312-macosx_15_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

dartpy-6.16.7-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

dartpy-6.16.7-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

File details

Details for the file dartpy-6.16.7-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dartpy-6.16.7-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for dartpy-6.16.7-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 74ac08f7f75345e9dd2e8c2dccb67226caf5a4cae55282cb54f711d156a8e929
MD5 616c72b48e2f856fbc019a724c17b624
BLAKE2b-256 ebacb96f54059c07609e0d9214e7c460a757f12aff3db66c45789e79f9307d53

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5954aa8c1b8ca84f2d6e285eb8e090f712bc7fffeaf81f8e8b3f78d076c46c5b
MD5 eace31a1abd552c8331bc356b7fdc651
BLAKE2b-256 6237024fabe4493eedf1a9906d242ce4be85c9798c2b257512772c41a5303c77

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 96496f27b6d32fccd60020f48b5aa0425ab6a2b8c32021a2322341a236e1263c
MD5 9b244ea79da2cac7a0aa3e77684694a6
BLAKE2b-256 8f9690acc509fc5c4b62d8b8deb335f5683358ff37289d621a6f472da72feeb8

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dartpy-6.16.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for dartpy-6.16.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 918f89360a114514930cf9cce4e8ad5ef47e14f8145cc309fc8dd49f06025573
MD5 9cd03300c28f28134a14044c9e6c1076
BLAKE2b-256 60464bcad88fc8e0ba5f08d81188f71dfd11d5205f2d3b9e4c6c5bfe1a754ee6

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 82b8fa7303455da3e5767296f92ce4c6430866cb5da14596abeebbae5c00e41e
MD5 6c6d39e4321ce75474f806dca13d008f
BLAKE2b-256 454fd549b5c29caccbdad095852132502ed04e90d83235ecd25d1a67f0cc796f

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 6130dd1a00267939544eb0577c65fed5e4f0d8d86d58517b7f08455c9081d374
MD5 6df5ec7f005ca429d99771883f58233f
BLAKE2b-256 69604ac44ac9d4e4b1594ba1dae3db23f61790fba8b1a838fe780eb19471f9cf

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 424e15c51907fca21bdeedb99a780f3373669539ac3803ee6c72c6b8246562e6
MD5 2310170c710c2d398b3df6d782b83646
BLAKE2b-256 969168dbe1e279888021c9eaf5c634c9e29f0fcede89a0d0405b42535f35e4a9

See more details on using hashes here.

File details

Details for the file dartpy-6.16.7-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dartpy-6.16.7-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 13f5e6042030c875b3502b427d648057983a47951e5b8352782100a5a0e98adc
MD5 6a5387cf3ee1aa1bd953ecb37f03c695
BLAKE2b-256 a924583c6ae89be1a6be66048de031f25f48be78ba5ef4c13fec51e3231e6884

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page