Skip to main content

State of the art decentralized optimization library

Project description

Linearly Convergent Decentralized Learning with Arbitrary Communication Compression

How do I run the Code?

A. Install our package: 
pip3 install decopt

(A.1) Often get the latest update:
 pip3 install decopt --upgrade 

B. Get Data: 
sh pull_data.sh breast_cancer

c. Run script with default parameters: 
python3 driver.py

With different parameters:
python3 driver.py --d 'mnist' --n_cores 10 --algorithms 'ours'


Parameter Options:

parser.add_argument('--d', type=str, default='breast_cancer',
                        help='Pass data-set')
    parser.add_argument('--r', type=str, default=os.path.join(curr_dir, './data/'),
                        help='Pass data root')
    parser.add_argument('--stochastic', type=bool, default=False)
    parser.add_argument('--algorithm', type=str, default='ours')

    parser.add_argument('--n_cores', type=int, default=9)

    parser.add_argument('--topology', type=str, default='ring')
    parser.add_argument('--Q', type=int, default=2)
    parser.add_argument('--consensus_lr', type=float, default=0.3)

    parser.add_argument('--quantization_function', type=str, default='full')
    parser.add_argument('--num_bits', type=int, default=2)
    parser.add_argument('--fraction_coordinates', type=float, default=0.1)
    parser.add_argument('--dropout_p', type=float, default=0.1)

    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--lr_type', type=str, default='constant')
    parser.add_argument('--initial_lr', type=float, default=0.01)
    parser.add_argument('--epoch_decay_lr', type=float, default=0.9)
    parser.add_argument('--regularizer', type=float, default=0)

    parser.add_argument('--estimate', type=str, default='final')
    parser.add_argument('--n_proc', type=int, default=3, help='no of parallel processors for Multi-proc')
    parser.add_argument('--n_repeat', type=int, default=3, help='no of times repeat exp with diff seed')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

decopt-2.1.1.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

decopt-2.1.1-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file decopt-2.1.1.tar.gz.

File metadata

  • Download URL: decopt-2.1.1.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for decopt-2.1.1.tar.gz
Algorithm Hash digest
SHA256 21a1a939ebc2aff746035075c4569dc86b63170a732effc548d22787be49aa1c
MD5 5d5b0321d6b28ef9456bb32a401bbc6b
BLAKE2b-256 e865609e31b5f2c1ab4222f0d641577a629d7f01d101a2b419f357ad9cd97bab

See more details on using hashes here.

File details

Details for the file decopt-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: decopt-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for decopt-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8a3ff505fb87ca05b2a2ebc8b9b27805d9bc41a4e0e7315001e94601ab421c0b
MD5 ed52f24a83ce82cfc6b55652a39b6380
BLAKE2b-256 a8ff8b4970436f0d2b39ecb485019c4c327c8bd26f915b0dc0e77bf488633ae1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page