Skip to main content

Deep Utils

Project description

Downloads PyPI

Deep Utils

This repository contains the most frequently used deep learning modules and functions.

Table of contents

Quick start

  1. Install:

    # With pip:
    pip install deep_utils
    
    # or from the repo
    pip install git+https://github.com/Practical-AI/deep_utils.git
    
    # or clone the repo
    git clone https://github.com/Practical-AI/deep_utils.git deep_utils
    pip install -U deep_utils 
    
  2. In python, import deep_utils and instantiate models:

    from deep_utils import face_detector_loader, list_face_detection_models
    
    # list all the available models first 
    list_face_detection_models()
    
    # Create a face detection model using SSD
    face_detector = face_detector_loader('SSDCV2CaffeFaceDetector')
    
  3. Detect an image:

    import cv2
    from deep_utils import show_destroy_cv2, Box
    
    # Load an image
    img = cv2.imread(<image path>)
    
    # Detect the faces
    boxes, confidences = face_detector.detect_faces(img)
    
    # Draw detected boxes on the image 
    img = Box.put_box(img, boxes)
    
    # show the results
    show_destroy_cv2(img) 
    

References

  1. Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch

Project details


Release history Release notifications | RSS feed

This version

0.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deep_utils-0.3.0.tar.gz (95.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

deep_utils-0.3.0-py3-none-any.whl (128.4 kB view details)

Uploaded Python 3

File details

Details for the file deep_utils-0.3.0.tar.gz.

File metadata

  • Download URL: deep_utils-0.3.0.tar.gz
  • Upload date:
  • Size: 95.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deep_utils-0.3.0.tar.gz
Algorithm Hash digest
SHA256 230aa854d14a5b8e6f97a78a9f595ecb0d6047501c9e5bbbfb7ed7b36c935a6e
MD5 b529acdbcaaeca67754b09269559bd05
BLAKE2b-256 ffdf1590bc6fe4e6aacc33765ff1219e9939d7dae6af7d5a2b076e627ddbf496

See more details on using hashes here.

File details

Details for the file deep_utils-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: deep_utils-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 128.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deep_utils-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 38eab076fb94fe1ecef46854a2d0327009c56b94311efe33fe82a496e2fea3ea
MD5 4301c59957d479cede81ddb198ede412
BLAKE2b-256 95fca79f131509c508d4e500f2d9f11d04add94aa20225a058ff39abb036de3e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page