Deep Utils
Project description
Deep Utils
This repository contains the most frequently used deep learning modules and functions.
Table of contents
Quick start
-
Install:
# With pip: pip install deep_utils # or from the repo pip install git+https://github.com/Practical-AI/deep_utils.git # or clone the repo git clone https://github.com/Practical-AI/deep_utils.git deep_utils pip install -U deep_utils
-
In python, import deep_utils and instantiate models:
from deep_utils import face_detector_loader, list_face_detection_models # list all the available models first list_face_detection_models() # Create a face detection model using SSD face_detector = face_detector_loader('SSDCV2CaffeFaceDetector')
-
Detect an image:
import cv2 from deep_utils import show_destroy_cv2, Box # Load an image img = cv2.imread(<image path>) # Detect the faces boxes, confidences = face_detector.detect_faces(img) # Draw detected boxes on the image img = Box.put_box(img, boxes) # show the results show_destroy_cv2(img)
References
- Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep_utils-0.4.1.tar.gz
(96.0 kB
view hashes)
Built Distribution
deep_utils-0.4.1-py3-none-any.whl
(128.7 kB
view hashes)
Close
Hashes for deep_utils-0.4.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2057db88d6d3eba0bd56398885f3aeb0f050068bfc2e1b66b5c5ee14be1401c7 |
|
MD5 | c654c403840f905a7224c9821643b2bb |
|
BLAKE2b-256 | 2c0d4bb166b2ce7131060b7ae2b2b3dc97f7fe8ecd4785e42205ebd25fccf411 |