Deep Utils
Project description
Deep Utils
This repository contains the most frequently used deep learning modules and functions.
Table of contents
Quick start
-
Install:
# With pip: pip install deep_utils # or from the repo pip install git+https://github.com/Practical-AI/deep_utils.git # or clone the repo git clone https://github.com/Practical-AI/deep_utils.git deep_utils pip install -U deep_utils
-
In python, import deep_utils and instantiate models:
from deep_utils import face_detector_loader, list_face_detection_models # list all the available models first list_face_detection_models() # Create a face detection model using SSD face_detector = face_detector_loader('SSDCV2CaffeFaceDetector')
-
Detect an image:
import cv2 from deep_utils import show_destroy_cv2, Box # Load an image img = cv2.imread(<image path>) # Detect the faces boxes, confidences = face_detector.detect_faces(img) # Draw detected boxes on the image img = Box.put_box(img, boxes) # show the results show_destroy_cv2(img)
References
- Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep_utils-0.6.0.tar.gz
(96.9 kB
view hashes)
Built Distribution
deep_utils-0.6.0-py3-none-any.whl
(130.5 kB
view hashes)
Close
Hashes for deep_utils-0.6.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee8f93005cceef66493a87ecbc53d57fc3c43d7f17606e78807b84964d64a748 |
|
MD5 | 5fd952f796cafe556d02471d24160c2e |
|
BLAKE2b-256 | 8e0d55ada96a12a5747b1fd0d15b0058e3066cd35c828fba8f98693dab6c8137 |