Skip to main content

A simple mongo based log handler for python/django

Project description

MongoLog is a simple Mongo based log handler that can be easly used with standard python/django logging.

Please visit the MongoLog Users Group with any questions/suggestions. Thanks.

https://travis-ci.org/gnulnx/django-mongolog.svg?branch=master https://coveralls.io/repos/gnulnx/django-mongolog/badge.svg?branch=master&service=github https://api.codacy.com/project/badge/grade/d8d4eaa24bbe4ae5afe608210e4b8d28

Quick start

  1. Add “mongolog” to your INSTALLED_APPS like this
    INSTALLED_APPS = (
        ...
        'mongolog',
    )
  2. Add the SimpleMongoLogHandler to your LOGGING config.
    LOGGING = {
        'version': 1,
        'handlers': {
            'mongolog': {
                'level': 'DEBUG',
                'class': 'mongolog.SimpleMongoLogHandler',
                'connection': 'mongodb://localhost:27017'
            },
        },
        'loggers': {
            '': {
                'handlers': ['mongolog'],
                'level': 'DEBUG',
                'propagate': True
            },
        },
    }
  1. Start your management shell:

    ./manage.py shell
  2. Create a couple of log entries
    import logging
    import pymongo
    logger = logging.getLogger(__name__)

    One of the cool things about mongolog is that it can log complex data structures in a way that makes them both human parsable and queryable. So for instance if we create the following log message:

    # Pro Tip: You can copy and paste all of this
    
    LOG_MSG = {
        'test': True,
        'test class': 'TestBaseMongoLogHandler',
        'Life': {
            'Domain': {
                'Bacteria': [
                    {
                        'name': ValueError,  # intentional bad value
                        'description': 'Just a bad description'
                    }
                ],
                'Archaea': [],
                'Eukaryota': [
                    {
                        'name': 'Excavata',
                        'description': 'Various flagellate protozoa',
                    },
                    {
                        'name': 'Amoebozoa',
                        'descritpion': 'most lobose amoeboids and slime moulds',
                    },
                    {
                        'name': 'Opisthokonta',
                        'description': 'animals, fungi, choanoflagellates, etc.',
                    },
                ]
            }
        }
    }

    Now let’s log our message at each of the defined log levels…

    logger.debug(LOG_MSG)
    logger.info(LOG_MSG)
    logger.warn(LOG_MSG)
    logger.error(LOG_MSG)
    try:
        raise ValueError("Bad Value")
    except ValueError as e:
        logger.exception(LOG_MSG)
        raise
  3. Now log into your mongo shell and look at some results
    ./mongo
    
    use mongolog
    db.mongolog.findOne({'level': "INFO"})

    Will produde a mongo document like:

    {
        "_id" : ObjectId("5664a22bdd162ca58f0693d2"),
        "name" : "__builtin__",
        "thread" : NumberLong("140735229362944"),
        "level" : "INFO",
        "process" : 42383,
        "module" : "<console>",
        "filename" : "<console>",
        "func" : "<module>",
        "time" : ISODate("2015-12-06T21:01:31.258Z"),
        "msg" : {
            "test" : true,
            "Life" : {
                "Domain" : {
                    "Eukaryota" : [
                        {
                            "name" : "Excavata",
                            "description" : "Various flagellate protozoa"
                        },
                        {
                            "name" : "Amoebozoa",
                            "descritpion" : "most lobose amoeboids and slime moulds"
                        },
                        {
                            "name" : "Opisthokonta",
                            "description" : "animals, fungi, choanoflagellates, etc."
                        }
                    ],
                    "Archaea" : [ ],
                    "Bacteria" : [
                        {
                            "name" : "<type 'exceptions.ValueError'>",
                            "description" : "Just a bad description"
                        }
                    ]
                }
            },
            "test class" : "TestBaseMongoLogHandler"
        },
        "path" : "<console>",
        "line" : 1
    }

    Take a look at the “msg” section and you will notice that all of the information from our LOG_MSG is contained under that key in standard mongo data structures. This means that we can query based on our log message. For example in your mongo shell try the following queries:

    // Find all documents logged with a 'test' key
    > db.mongolog.find({'msg.test': {$exists: true}}).count()
    5
    
    // Find all documents that have a Eukaryota name in the list of  ["Amoebozoa", "Opisthokonta"]
    > db.mongolog.find({
        'msg.Life.Domain.Eukaryota.name': {
            $in: ["Amoebozoa", "Opisthokonta"]
        }
      }).count()
    1
    
    // Same as above but only those documents logged at level INFO
    >db.mongolog.find({
        'level': 'INFO',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).count()
    1
    
    // And again at level ERROR.
    >db.mongolog.find({
        'level': 'INFO',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).count()
    2
    
    // Notice that now two records are returned.  This is because
    // logger.exception(...) also logs at level ERROR, but also notice that if when we
    // pretty print the records...
    >db.mongolog.find({
        'level': 'ERROR',
        'msg.Life.Domain.Eukaryota.name': {$in: ["Amoebozoa", "Opisthokonta"]},
    }).pretty()
    
    // ...that one of the entries has exception info.  When running in a real environment
    // and not the console the 'trace' section will be populated with the full stack trace.
    "exception" : {
        "info" : [
            "<type 'exceptions.ValueError'>",
            "Bad Value",
            "<traceback object at 0x106853b90>"
        ],
        "trace" :
         null
    }

Future Roadmap

Currently mongolog has pretty solid support for logging arbitrary datastructures. If it finds an object it doesn’t know how to natively serialize it will try to convert it to str().

The next steps are to create a set of most used query operations for probing the log.

Please give a shout out with feedback and feature requests.

Thanks

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-mongolog-0.8.1.tar.gz (32.5 kB view details)

Uploaded Source

File details

Details for the file django-mongolog-0.8.1.tar.gz.

File metadata

File hashes

Hashes for django-mongolog-0.8.1.tar.gz
Algorithm Hash digest
SHA256 b4daa24c000ae86a35cb22420168652625eafadef1d7f477961f57525c06ea80
MD5 3c333a36af86aca0c00eea7abb991ec1
BLAKE2b-256 c5ad53899a959749231ea4e3445d94d112b3b47bb314ba69504890555d88fffb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page