Skip to main content

A Small Package for Use of Research

Project description

Dimension Reduction Function Research (drfr)

This package provides a Reduction Model and Regression Model, which respectively contains several choices for reduction and regression of data. It also contains several novelty detection methods for preprocessing

Discription of Each Model

Reduction Model

contains "NPPE", "UMAP", "LLE", "Hessian", "Spectral", "TSNE", "Isomap", used as keyword argument tag in function get_reduction(). To make tag "UMAP" work properly, an install according to is needed.

Regression Model

contains "lasso", "ridge", "MARS", used as keyword argument tag in function cal_regression(). As basis generator either those in BasisGenerator or self made function can be used, where data X should be the only positional argument.

Basis Generator

contains several functions as basis generators, with form

 # generate_basis_function(X, p=basis_degree)

Novelty Detector

The detector contains reimplemented kernel PCA, diffusion map, and robust PCA (used in Robust Hessian LLE). More methods can be found in the package pyod by Y.Zhao Use argument method to choose a method, including kpca, dmap, pca, lof, ocsvm, iforest, rforest, rbhessian.


pip install drfr


from drfr import ReductionModel, BasisGenerator, RegressionModel, NoveltyDetector
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

if __name__ == "__main__":	
	N = 2000
    k = 24
    X, color = datasets.samples_generator.make_swiss_roll(n_samples=N, noise=0.001)
    basis_generator = None
    outlier_quote = 0.8
    poly_degree = 4
    tag_red = "NPPE"
    tag_reg = "MARS"

    # preprocessing
    scores = NoveltyDetector.evaluate_novelty(X, labels=color, method="pca")
    inlier_ind = np.argwhere(scores < outlier_quote * scores.max()).flatten()
    X = X[inlier_ind]
    color = color[inlier_ind]

    # compute embedded result
    red_model = ReductionModel.ReductionModel()
    y_nppe = red_model.get_reduction(X, tag=tag_red)

    # compute regression weights w given X and y, and compute basis(X)*y
    reg_model = RegressionModel.RegressionModel()
    y_reg = reg_model.cal_regression(X, y_nppe, tag=tag_reg, basis_generator=BasisGenerator.generate_fourier,

    # draw results
    fig = plt.figure()
    ax = fig.add_subplot(311, projection='3d')
    ax.scatter(X[:, 1], X[:, 0], X[:, 2], c=color,

    ax.set_title("Original data")
    ax = fig.add_subplot(312)
    ax.scatter(y_nppe[:, 1], y_nppe[:, 0], c=color,
    plt.xticks([]), plt.yticks([])
    plt.title('Projected data with method' + tag_red)
    ax = fig.add_subplot(313)
    ax.scatter(y_reg[:, 1], y_reg[:, 0], c=color,
    plt.xticks([]), plt.yticks([])
    plt.title("NPPE embedded data regressed by " + tag_reg + " Model\n" + "with basis degree" + poly_degree.__str__())

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

drfr-0.9.6-py3-none-any.whl (19.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page