Skip to main content

A Small Package for Use of Research

Project description

Dimension Reduction Function Research (drfr)

This package provides a Reduction Model and Regression Model, which respectively contains several choices for reduction and regression of data.

Discription of Each Model

Reduction Model

contains "NPPE", "UMAP", "LLE", "Hessian", "Spectral", "TSNE", "Isomap", used as keyword argument tag in function get_reduction(). To make tag "UMAP" work properly, an install according to https://github.com/lmcinnes/umap is needed.

Regression Model

contains "lasso", "ridge", "MARS", used as keyword argument tag in function cal_regression(). As basis generator either those in BasisGenerator or self made function can be used, where data X should be the only positional argument.

Basis Generator

contains several functions as basis generators, with form

generate_basis_name(X, p=basis_degree)

Usage

from drfr import ReductionModel, BasisGenerator, RegressionModel
from sklearn import datasets
import matplotlib.pyplot as plt

N = 5000
k = 24
X, color = datasets.samples_generator.make_swiss_roll(n_samples=N, noise=0.00001)
basis_generator = None
poly_degree = 4
tag_red = "NPPE"
tag_reg = "MARS"

# preprocessing
X, color = ReductionModel.pre_process(X, color)

# compute embedded result
red_model = ReductionModel.ReductionModel()
y_nppe = red_model.get_reduction(X, tag=tag_red)

# compute regression weights w given X and y, and compute basis(X)*y
reg_model = RegressionModel.RegressionModel()
y_reg = reg_model.cal_regression(X, y_nppe, tag=tag_reg, basis_generator=BasisGenerator.generate_fourier, p=poly_degree)

# draw results
ax = fig.add_subplot(311, projection='3d')
ax.scatter(X[:, 1], X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(312)
ax.scatter(y_nppe[:, 1], y_nppe[:, 0], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data with method' + tag_red)
ax = fig.add_subplot(313)
ax.scatter(y_reg[:, 1], y_reg[:, 0], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title("NPPE embedded data regressed by " + tag_reg + " Model\n" + "with basis degree" + poly_degree.__str__())
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

drfr-0.9-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file drfr-0.9-py3-none-any.whl.

File metadata

  • Download URL: drfr-0.9-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for drfr-0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 8b4df55dcab05366a6b2d8868aa85522c0d6757ef57765edf0b62f8c24cf98f2
MD5 9e142f966967ffc5a37d60915afd791d
BLAKE2b-256 b5340bd58abc22ce2160adea15e9dc5f987a548907dc5717d86ec08254a2c9ed

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page