Skip to main content

A comprehensive implementation of dynamic time warping (DTW) algorithms. DTW computes the optimal (least cumulative distance) alignment between points of two time series. Common DTW variants covered include local (slope) and global (window) constraints, subsequence matches, arbitrary distance definitions, normalizations, minimum variance matching, and so on. Provides cumulative distances, alignments, specialized plot styles, etc.

Project description

Comprehensive implementation of Dynamic Time Warping algorithms.

DTW is a family of algorithms which compute the local stretch or compression to apply to the time axes of two timeseries in order to optimally map one (query) onto the other (reference). DTW outputs the remaining cumulative distance between the two and, if desired, the mapping itself (warping function). DTW is widely used e.g. for classification and clustering tasks in econometrics, chemometrics and general timeseries mining.

This package provides the most complete, freely-available (GPL) implementation of Dynamic Time Warping-type (DTW) algorithms up to date. It is a faithful Python equivalent of R’s DTW package on CRAN. Supports arbitrary local (e.g. symmetric, asymmetric, slope-limited) and global (windowing) constraints, fast native code, several plot styles, and more.

https://github.com/DynamicTimeWarping/dtw-python/workflows/Build%20and%20upload%20to%20PyPI/badge.svg https://badge.fury.io/py/dtw-python.svg https://codecov.io/gh/DynamicTimeWarping/dtw-python/branch/master/graph/badge.svg

Documentation

Please refer to the main DTW suite homepage for the full documentation and background.

The best place to learn how to use the package (and a hopefully a decent deal of background on DTW) is the companion paper Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package, which the Journal of Statistical Software makes available for free. It includes detailed instructions and extensive background on things like multivariate matching, open-end variants for real-time use, interplay between recursion types and length normalization, history, etc.

To have a look at how the dtw package is used in domains ranging from bioinformatics to chemistry to data mining, have a look at the list of citing papers.

Note: R is the prime environment for the DTW suite. Python’s docstrings and the API below are generated automatically for the sake of consistency and maintainability, and may not be as pretty.

Features

The implementation provides:

  • arbitrary windowing functions (global constraints), eg. the Sakoe-Chiba band and the Itakura parallelogram;

  • arbitrary transition types (also known as step patterns, slope constraints, local constraints, or DP-recursion rules). This includes dozens of well-known types:

  • partial matches: open-begin, open-end, substring matches

  • proper, pattern-dependent, normalization (exact average distance per step)

  • the Minimum Variance Matching (MVM) algorithm (Latecki et al.)

In addition to computing alignments, the package provides:

  • methods for plotting alignments and warping functions in several classic styles (see plot gallery);

  • graphical representation of step patterns;

  • functions for applying a warping function, either direct or inverse;

  • a fast native (C) core.

Multivariate timeseries can be aligned with arbitrary local distance definitions, leveraging the [proxy::dist](https://www.rdocumentation.org/packages/proxy/versions/0.4-23/topics/dist) (R) or [scipy.spatial.distance.cdist](https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html) (Python) functions.

Citation

When using in academic works please cite:

    1. Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Soft., 31 (2009) doi:10.18637/jss.v031.i07.

When using partial matching (unconstrained endpoints via the open.begin/open.end options) and/or normalization strategies, please also cite:

    1. Tormene, T. Giorgino, S. Quaglini, M. Stefanelli (2008). Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation. Artificial Intelligence in Medicine, 45(1), 11-34. doi:10.1016/j.artmed.2008.11.007

Source code

Releases (stable versions) are available in the dtw-python project on PyPi. Development occurs on GitHub at <https://github.com/DynamicTimeWarping/dtw-python>.

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtw-python-1.1.12.tar.gz (232.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dtw_python-1.1.12-cp39-cp39-win_amd64.whl (290.7 kB view details)

Uploaded CPython 3.9Windows x86-64

dtw_python-1.1.12-cp39-cp39-win32.whl (280.6 kB view details)

Uploaded CPython 3.9Windows x86

dtw_python-1.1.12-cp39-cp39-manylinux2010_x86_64.whl (598.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

dtw_python-1.1.12-cp39-cp39-manylinux2010_i686.whl (582.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

dtw_python-1.1.12-cp39-cp39-manylinux1_x86_64.whl (598.2 kB view details)

Uploaded CPython 3.9

dtw_python-1.1.12-cp39-cp39-manylinux1_i686.whl (582.1 kB view details)

Uploaded CPython 3.9

dtw_python-1.1.12-cp39-cp39-macosx_11_0_arm64.whl (292.4 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

dtw_python-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl (301.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

dtw_python-1.1.12-cp39-cp39-macosx_10_9_universal2.whl (368.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

dtw_python-1.1.12-cp38-cp38-win_amd64.whl (300.0 kB view details)

Uploaded CPython 3.8Windows x86-64

dtw_python-1.1.12-cp38-cp38-win32.whl (289.9 kB view details)

Uploaded CPython 3.8Windows x86

dtw_python-1.1.12-cp38-cp38-manylinux2010_x86_64.whl (624.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

dtw_python-1.1.12-cp38-cp38-manylinux2010_i686.whl (606.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

dtw_python-1.1.12-cp38-cp38-manylinux1_x86_64.whl (624.6 kB view details)

Uploaded CPython 3.8

dtw_python-1.1.12-cp38-cp38-manylinux1_i686.whl (606.3 kB view details)

Uploaded CPython 3.8

dtw_python-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl (308.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

dtw_python-1.1.12-cp37-cp37m-win_amd64.whl (298.8 kB view details)

Uploaded CPython 3.7mWindows x86-64

dtw_python-1.1.12-cp37-cp37m-win32.whl (288.8 kB view details)

Uploaded CPython 3.7mWindows x86

dtw_python-1.1.12-cp37-cp37m-manylinux2010_x86_64.whl (580.9 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

dtw_python-1.1.12-cp37-cp37m-manylinux2010_i686.whl (564.5 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

dtw_python-1.1.12-cp37-cp37m-manylinux1_x86_64.whl (580.9 kB view details)

Uploaded CPython 3.7m

dtw_python-1.1.12-cp37-cp37m-manylinux1_i686.whl (564.5 kB view details)

Uploaded CPython 3.7m

dtw_python-1.1.12-cp37-cp37m-macosx_10_9_x86_64.whl (309.3 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

dtw_python-1.1.12-cp36-cp36m-win_amd64.whl (308.3 kB view details)

Uploaded CPython 3.6mWindows x86-64

dtw_python-1.1.12-cp36-cp36m-win32.whl (294.3 kB view details)

Uploaded CPython 3.6mWindows x86

dtw_python-1.1.12-cp36-cp36m-manylinux2010_x86_64.whl (581.7 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

dtw_python-1.1.12-cp36-cp36m-manylinux2010_i686.whl (564.2 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ i686

dtw_python-1.1.12-cp36-cp36m-manylinux1_x86_64.whl (581.7 kB view details)

Uploaded CPython 3.6m

dtw_python-1.1.12-cp36-cp36m-manylinux1_i686.whl (564.2 kB view details)

Uploaded CPython 3.6m

dtw_python-1.1.12-cp36-cp36m-macosx_10_9_x86_64.whl (309.1 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file dtw-python-1.1.12.tar.gz.

File metadata

  • Download URL: dtw-python-1.1.12.tar.gz
  • Upload date:
  • Size: 232.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw-python-1.1.12.tar.gz
Algorithm Hash digest
SHA256 887a67211275d2f9e70eb3b1319890cb5d7f9a8e0d68e5a5566664448d51ce26
MD5 31956e0e8cc0708db2642beebb22da1a
BLAKE2b-256 27d1d7e0592a075fa68be4e53e80c81c1eb147dffece60117df7cc1377284557

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 290.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea6c19a06183bb2980da11c342277ee24e7f15873e29d8c8dd8498d7e0cd45d3
MD5 0ae79e64d417f840c06941ea3caf82ab
BLAKE2b-256 3ab5b471fca550e055eb4749e865dc044e20e2913cdcd68861e37752a1022eea

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 280.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d5ff3dbf3b077395de1b829a6e6a937aa1ea99733704cdc20bd08db1c88d412f
MD5 ddd8dc6433b3d2b4b5602f734ac699c6
BLAKE2b-256 9ac4a17c48c4d1c1bac177b8086f833858426c05056187df9c2f693a1ead26f1

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 598.3 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 463cfa24b685e0bfe5b8d4cd17a95e138dde7aa989a3db8e2c09c6f105c92f8f
MD5 834368cdffb78e22464a5467ff7d41a1
BLAKE2b-256 773885fbdb932b57cc9dc71771a23121b04dab3e9b5391e4a3ae1145787b3f71

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 582.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5d386e9278178f9d068894db923081d61afa7b1bc8d8bcefc52e4e20152932a0
MD5 36d4c7b28b60182801a766d1861a124e
BLAKE2b-256 56538e9977b8add5de96349d3e1b9a5b935f7b17a34aa5408b99336bd235a35e

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 598.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e3dbf42131928e7279d749eeed1173efe6eab18d340e583502bb547e3a8d40e
MD5 a541429da899be34cb9daaf1bf1afdcd
BLAKE2b-256 3f8f890c1e224a5aaf2eb3085574d4747b8f88e09a7f6b924a8188893f12554a

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 582.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a1fb377c7e7214c4883fcf1c805b62cc56415a33f6ebc660170bfaf72d56c039
MD5 6d10a535a2f1d289068bd6ff35593896
BLAKE2b-256 b92c0fc3ad0dfe71afa08160b34d6a25fe33789f9ab826958f5f2347a9f901bc

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 292.4 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3788ddbc0c4fae0c2038cad9e296f59d6d774eebe374885ab39a2a308d2b0b1d
MD5 6e995668714628ce6db1255c1ebd85f8
BLAKE2b-256 738f4dbd32bab21083a3024d90080ce13be376f29966347a1458bddbd78640ee

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 301.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5123252e4a699ce24df6e15bdf9a6d3965516e67a4a2472fd066a0eb70f61aa7
MD5 5e8bdff85bf0e76d35e69ed6cbe6c8bb
BLAKE2b-256 076d7a9503bc3c0cc5a7bc68ee65d17a0b0d1d1ab452b67152edaf83cf7ee6f2

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 368.7 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1605252a5dbb71d4358efdb95cce638a9729125da43a90aa903d1afcdf6a761c
MD5 c36b3e68652414db5f4e4f9a28628130
BLAKE2b-256 86baf559829ed1b99ef824bd81ba9932ae40051594e6a8dd1905633b8fe5805a

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 300.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8330655534947d06d23950209662b9b5e983b97ac752cc19ddc884d8be8fabc9
MD5 20c945ed7a0b71fc0b7e7598fa845442
BLAKE2b-256 83cc29484f9245f048ff00c0a38ffff5fa90408cfd19c1ebe7d5046eee592224

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 289.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d9f50653afe5cc0de858f718f9b29ec55d03feb31ffdb3b082926fa99f79d974
MD5 7dd750298bcb5c19c495444ac65918ce
BLAKE2b-256 a24974f7a5a4403a399cd9f3d053407b3b30c73b5697d109569b5f494dde096a

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 624.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eb409ef0232a76b39c41bd1485f9673c77e5208f33227a39cc83c85ed4e5e0b0
MD5 8795ad3f427139e8e54599b70bb36757
BLAKE2b-256 59181d7a14ddc83d345f763614cf1b4ada04e223ea71e8c91bd266bcbd3c71ee

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 606.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c96b899bd2da92dde3e53532a4122aae1b5eeffa752ac0219edd469d55e82239
MD5 d37e5514c6eeef9fed5a445187b0d0d1
BLAKE2b-256 49a675f2f15af9e1085ee702737432d92e02b0ce4ebdb7704e0266124613174f

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 624.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fc91f72c2aab2b410b4341fb6366c1b8afc671fad76f5a3eb5cae0898b24de97
MD5 015e3cc929b62cf1c05038621d505a30
BLAKE2b-256 6d02c3d0e071ba61d33e8edb60f078576ffa5752de2c1a29823b293018a97ce1

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 606.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 448053ef33b7e156f3e85e643cf1af4904252271eeb3e08fdff88bc3dfd0509d
MD5 571dcb592b11aec646412acf35d9be5f
BLAKE2b-256 248a35b3037e200b2e1b6e5fc0c6527479cd42eea596761f4751fa0a16047c11

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 308.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3da475e3e49fc76073701901cd2e3410b670f54b27dabf8062301e82fd7c3ced
MD5 af1409daa1b8ef32f87233f31df788dd
BLAKE2b-256 5a0ca103f10ee540ef7a01aee9369252f88e6306a0b90ea4345c9b2d4079f63b

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 298.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4065edad4a82e61d61d1d498df0335b2da6081a4e048202bd7ecfafcd51b6a5a
MD5 7e99839e316e575fac601c928b17a596
BLAKE2b-256 76697ae4169d1d5316f6997df182f89f44d4c9df77a19a96cc45a3b822b5c61a

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 288.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 704e5154cd5ff1e9a2bff087f826795406f77ad644b9510c1b12dec16c410205
MD5 6cab3903ffc534843582134a077f79f7
BLAKE2b-256 9e44a408407f115fbfdef572ad24ac396269c6239118220f47dc577bd87b7d96

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 580.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad0dee0761838432aff0bf26766b708cf3339a45a0160ea462f9744bfe4dd320
MD5 b4cda68953822d7e43a9a347bed71c14
BLAKE2b-256 3f0d7358e55f3e396a50cd37ab5b26a34931f923f77f1e20d5b8d907a498301d

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 564.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5c52dfa4d0beb8399f9e5b35826e9e3acf029d9b9df7c1bc0ca7e951055ffb1a
MD5 5f2f47a591bd47dc8e886f525f5135dc
BLAKE2b-256 18c32ad139b5edda08b4844417e5c85d525dcc9212f03ed3047372cc86c7aaa7

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 580.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dd6680b62f9084ebfd810bf3869a8fa7140349cbe9feda1049a49cc8df908a2e
MD5 62ef1db1a621e8a65f3f539d8f93810b
BLAKE2b-256 9f73c62312608b52fb54b761d13d1251fa8907863be68e89c065da6558bad10b

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 564.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 af0a6aab3b0ddc11b9c9eb16416d3db5803ba020b91c0e3d770da28d3609c832
MD5 b1068b87f514f56e566f688b71e46f2d
BLAKE2b-256 e8f1c7b4530d6c55b77f8b25559c248add040ae2785f57a86f5cd3622b16bd65

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 309.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6549e859341efc8369db164f265ffe7403428a59e53f6d270274f46723d4e553
MD5 a8f753d5e92be65b786a69206dcfbbc2
BLAKE2b-256 688691de972dc45d8148601f48facc79e723e4d96594c36177fde66db824a2a5

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 308.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a101d6527ccdd286295d7f2a79f04cfe1218ebc163bde477e5ea5db74db6e87a
MD5 32b896b291a1026a9ab935c0b85d1721
BLAKE2b-256 75acb1a622961e627759b4f011e2f8bc401fd20f52c86076a65ffcfbf9b89e35

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 294.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b69cf108055f17b70ea7ae82d762b7b447ab0e39aae9be8131f60596480750a8
MD5 22ef67177449a5eb025f36961f2ec59c
BLAKE2b-256 656942b20074e2c447a6f5085e5b84a999d0759bb05c01fa65cb2574b3828bb2

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 581.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9dc4f59b4af1e034ceb79f3a945f75490103ed1814f0877fad628e69d1d632a3
MD5 da7711adc155441e75234f66eb258556
BLAKE2b-256 51ce8a99094164bfc611dc50f19daa504d44a57cd40e96b2bd246b086d9809e6

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 564.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2c4cc8d1a16afda443dc2222c50e68465c40064a73fc13d27e3163c48521251f
MD5 6257eaf9a29ff8b6028046782aaa9716
BLAKE2b-256 f3f816996f5dfc76ed600453146d6aad0a684180078c4f22e8da7f417c4dd2d7

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 581.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7640d5af0ade3c121cb5449eac7b0f3353b4224bc14db267893c1a0d7bb8bd49
MD5 481152586d8f5a7eb591884844d8a179
BLAKE2b-256 81d9935734e51ae88c2d1b010c733371335f70edc100a22688864e62b1ec4609

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 564.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2556174a552fc56fbc265ee313782d378881d6d5c34b56e6543c98be3530df55
MD5 25788214f71309efa62ebf1b1124868d
BLAKE2b-256 a00be0a73c19d57711bcecac888f25bcc0f1517c01dc87ad056e2daa323879d9

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.12-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.12-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 309.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dtw_python-1.1.12-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0aa94f0b12956c5a22159ae3829afcb86c5db0188af313d8162d0bc02932090f
MD5 e49138813c629c5c796c4f1d3b597e68
BLAKE2b-256 5bcde501ab49ff65906269e9083488bdde6d3b1c0604efca49344329f056f34e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page