Machine learning for microcontrollers and embedded systems
Project description
emlearn
Machine learning for microcontroller and embedded systems. Train in Python, then do inference on any device with a C99 compiler.
Key features
Embedded-friendly Inference
- Portable C99 code
- No libc required
- No dynamic allocations
- Support integer/fixed-point math
- Single header file include
Convenient Training
- Using Python with scikit-learn
- C classifier accessible in Python using pybind11
Can be used as an open source alternative to MATLAB Classification Trees,
Decision Trees using MATLAB Coder for C/C++ code generation.
fitctree, fitcensemble, TreeBagger, ClassificationEnsemble, CompactTreeBagger
Status
Minimally useful
Classifiers:
eml_trees: Random Forests, ExtraTreeseml_net: MultiLayerPerceptroneml_bayes: GaussianNaiveBayes
Feature extraction:
eml_audio: Melspectrogram
Tested running on AVR Atmega, ESP8266 and Linux.
Installing
Install from PyPI
pip install --user emlearn
Usage
- Train your model in Python
from sklearn.ensemble import RandomForestClassifier
estimator = RandomForestClassifier(n_estimators=10, max_depth=10)
estimator.fit(X_train, Y_train)
...
- Convert it to C code
import emlearn
cmodel = emlearn.convert(estimator, method='inline')
cmodel.save(file='sonar.h')
- Use the C code
#include "sonar.h"
const int32_t length = 60;
int32_t values[length] = { ... };
const int32_t predicted_class = sonar_predict(values, length):
For full example code, see examples/digits.py and emlearn.ino
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file emlearn-0.3.1.tar.gz.
File metadata
- Download URL: emlearn-0.3.1.tar.gz
- Upload date:
- Size: 23.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.0 CPython/3.6.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b2552398e776dac4cf20943862de680201f74393fe383611fbef9cd60f013e2f
|
|
| MD5 |
7ea19e57c8d8cb4c468202df6af4172a
|
|
| BLAKE2b-256 |
de0281000da0e679274d4f599a1622fcf8d0b4a6752201f3f80b3c4bec33e239
|