Skip to main content

Machine learning for microcontrollers and embedded systems

Project description

emlearn

Machine learning for microcontroller and embedded systems. Train in Python, then do inference on any device with a C99 compiler.

Key features

Embedded-friendly Inference

  • Portable C99 code
  • No libc required
  • No dynamic allocations
  • Support integer/fixed-point math
  • Single header file include

Convenient Training

  • Using Python with scikit-learn or Keras
  • The generated C classifier is also accessible in Python

MIT licensed

Can be used as an open source alternative to MATLAB Classification Trees, Decision Trees using MATLAB Coder for C/C++ code generation. fitctree, fitcensemble, TreeBagger, ClassificationEnsemble, CompactTreeBagger

Status

Minimally useful

Classifiers:

  • eml_trees: sklearn.RandomForestClassifier, sklearn.ExtraTreesClassifier
  • eml_net: sklearn.MultiLayerPerceptron, Keras.Sequential with fully-connected layers
  • eml_bayes: sklearn.GaussianNaiveBayes

Feature extraction:

  • eml_audio: Melspectrogram

Tested running on AVR Atmega, ESP8266 and Linux.

Installing

Install from PyPI

pip install --user emlearn

Usage

  1. Train your model in Python
from sklearn.ensemble import RandomForestClassifier
estimator = RandomForestClassifier(n_estimators=10, max_depth=10)
estimator.fit(X_train, Y_train)
...
  1. Convert it to C code
import emlearn
cmodel = emlearn.convert(estimator, method='inline')
cmodel.save(file='sonar.h')
  1. Use the C code
#include "sonar.h"

const int32_t length = 60;
int32_t values[length] = { ... };
const int32_t predicted_class = sonar_predict(values, length):

For full example code, see examples/digits.py and emlearn.ino

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emlearn-0.4.0.tar.gz (25.0 kB view details)

Uploaded Source

File details

Details for the file emlearn-0.4.0.tar.gz.

File metadata

  • Download URL: emlearn-0.4.0.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.3

File hashes

Hashes for emlearn-0.4.0.tar.gz
Algorithm Hash digest
SHA256 01971b328f551ed510975846014c3b1ad67313ca7e36347b5617ca2c47c7f966
MD5 48c264880f8c1f1b86c901d8c80ee842
BLAKE2b-256 3853c61639dd4f20f47e9755bb9848dccd62bfaaa861d35ad28224bd496c522d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page