Skip to main content

Remap, mask, renumber, unique, and in-place transposition of 3D labeled images. Point cloud too.

Project description

Build Status PyPI version

fastremap

Renumber and relabel Numpy arrays at C++ speed and physically convert rectangular Numpy arrays between C and Fortran order using an in-place transposition.

import fastremap

uniq, cts = fastremap.unique(labels, return_counts=True) # may be much faster than np.unique
labels, remapping = fastremap.renumber(labels, in_place=True) # relabel values from 1 and refit data type
ptc = fastremap.point_cloud(labels) # dict of coordinates by label

labels = fastremap.refit(labels) # resize the data type of the array to fit extrema
labels = fastremap.refit(labels, value=-35) # resize the data type to fit the value provided

# remap all occurances of 1 -> 2
labels = fastremap.remap(labels, { 1: 2 }, preserve_missing_labels=True, in_place=True)

labels = fastremap.mask(labels, [1,5,13]) # set all occurances of 1,5,13 to 0
labels = fastremap.mask_except(labels, [1,5,13]) # set all labels except 1,5,13 to 0

mapping = fastremap.component_map([ 1, 2, 3, 4 ], [ 5, 5, 6, 7 ]) # { 1: 5, 2: 5, 3: 6, 4: 7 }
mapping = fastremap.inverse_component_map([ 1, 2, 1, 3 ], [ 4, 4, 5, 6 ]) # { 1: [ 4, 5 ], 2: [ 4 ], 3: [ 6 ] }

fastremap.transpose(labels) # physically transpose labels in-place
fastremap.ascontiguousarray(labels) # try to perform a physical in-place transposition to C order
fastremap.asfortranarray(labels) # try to perform a physical in-place transposition to F order

minval, maxval = fastremap.minmax(labels) # faster version of (np.min(labels), np.max(labels))

# computes number of matching adjacent pixel pairs in an image
num_pairs = fastremap.pixel_pairs(labels)  
n_foreground = fastremap.foreground(labels) # number of nonzero voxels

All Available Functions

  • unique: Faster implementation of np.unique.
  • renumber: Relabel array from 1 to N which can often use smaller datatypes.
  • remap: Custom relabeling of values in an array from a dictionary.
  • refit: Resize the data type of an array to the smallest that can contain the most extreme values in it.
  • mask: Zero out labels in an array specified by a given list.
  • mask_except: Zero out all labels except those specified in a given list.
  • component_map: Extract an int-to-int dictionary mapping of labels from one image containing component labels to another parent labels.
  • inverse_component_map: Extract an int-to-list-of-ints dictionary mapping from an image containing groups of components to an image containing the components.
  • remap_from_array: Same as remap, but the map is an array where the key is the array index and the value is the value.
  • remap_from_array_kv: Same as remap, but the map consists of two equal sized arrays, the first containing keys, the second containing values.
  • asfortranarray: Perform an in-place matrix transposition for rectangular arrays if memory is contiguous, standard numpy otherwise.
  • ascontiguousarray: Perform an in-place matrix transposition for rectangular arrays if memory is contiguous, standard numpy algorithm otherwise.
  • minmax: Compute the min and max of an array in one pass.
  • pixel_pairs: Computes the number of adjacent matching memory locations in an image. A quick heuristic for understanding if the image statistics are roughly similar to a connectomics segmentation.
  • foreground: Count the number of non-zero voxels rapidly.
  • point_cloud: Get the X,Y,Z locations of each foreground voxel grouped by label.

pip Installation

pip install fastremap

If not, a C++ compiler is required.

pip install numpy
pip install fastremap --no-binary :all:

Manual Installation

A C++ compiler is required.

sudo apt-get install g++ python3-dev 
mkvirtualenv -p python3 fastremap
pip install numpy

# Choose one:
python setup.py develop  
python setup.py install 

The Problem of Remapping

Python loops are slow, so Numpy is often used to perform remapping on large arrays (hundreds of megabytes or gigabytes). In order to efficiently remap an array in Numpy you need a key-value array where the index is the key and the value is the contents of that index.

import numpy as np 

original = np.array([ 1, 3, 5, 5, 10 ])
remap = np.array([ 0, -5, 0, 6, 0, 0, 2, 0, 0, 0, -100 ])
# Keys:            0   1  2  3  4  5  6  7  8  9    10

remapped = remap[ original ]
>>> [ -5, 6, 2, 2, -100 ]

If there are 32 or 64 bit labels in the array, this becomes impractical as the size of the array can grow larger than RAM. Therefore, it would be helpful to be able to perform this mapping using a C speed loop. Numba can be used for this in some circumstances. However, this library provides an alternative.

import numpy as np
import fastremap 

mappings = {
  1: 100,
  2: 200,
  -3: 7,
}

arr = np.array([5, 1, 2, -5, -3, 10, 6])
# Custom remapping of -3, 5, and 6 leaving the rest alone
arr = fastremap.remap(arr, mappings, preserve_missing_labels=True) 
# result: [ 5, 100, 200, -5, 7, 10, 6 ]

The Problem of Renumbering

Sometimes a 64-bit array contains values that could be represented by an 8-bit array. However, similarly to the remapping problem, Python loops can be too slow to do this. Numpy doesn't provide a convenient way to do it either. Therefore this library provides an alternative solution.

import fastremap
import numpy as np

arr = np.array([ 283732875, 439238823, 283732875, 182812404, 0 ], dtype=np.int64) 

arr, remapping = fastremap.renumber(arr, preserve_zero=True) # Returns uint8 array
>>> arr = [ 1, 2, 1, 3, 0 ]
>>> remapping = { 0: 0, 283732875: 1, 439238823: 2, 182812404: 3 }

arr, remapping = fastremap.renumber(arr, preserve_zero=False) # Returns uint8 array
>>> arr = [ 1, 2, 1, 3, 4 ]
>>> remapping = { 0: 4, 283732875: 1, 439238823: 2, 182812404: 3 }

arr, remapping = fastremap.renumber(arr, preserve_zero=False, in_place=True) # Mutate arr to use less memory
>>> arr = [ 1, 2, 1, 3, 4 ]
>>> remapping = { 0: 4, 283732875: 1, 439238823: 2, 182812404: 3 }

The Problem of In-Place Transposition

When transitioning between different media, e.g. CPU to GPU, CPU to Network, CPU to disk, it's often necessary to physically transpose multi-dimensional arrays to reformat as C or Fortran order. Tranposing matrices is also a common action in linear algebra, but often you can get away with just changing the strides.

An out-of-place transposition is easy to write, and often faster, but it will spike peak memory consumption. This library grants the user the option of performing an in-place transposition which trades CPU time for peak memory usage. In the special case of square or cubic arrays, the in-place transpisition is both lower memory and faster.

  • fastremap.asfortranarray: Same as np.asfortranarray but will perform the transposition in-place for 1, 2, 3, and 4D arrays. 2D and 3D square matrices are faster to process than with Numpy.
  • fastremap.ascontiguousarray: Same as np.ascontiguousarray but will perform the transposition in-place for 1, 2, 3, and 4D arrays. 2D and 3D square matrices are faster to process than with Numpy.
import fastremap
import numpy as np 

arr = np.ones((512,512,512), dtype=np.float32)
arr = fastremap.asfortranarray(x)

arr = np.ones((512,512,512), dtype=np.float32, order='F')
arr = fastremap.ascontiguousarray(x)

C++ Usage

The in-place matrix transposition is implemented in ipt.hpp. If you're working in C++, you can also use it directly like so:

#include "ipt.hpp"

int main() {

  int sx = 128;
  int sy = 124;
  int sz = 103;
  int sw = 3;

  auto* arr = ....;

  // All primitive number types supported
  // The array will be modified in place, 
  // so these functions are void type.
  ipt::ipt<int>(arr, sx, sy);            // 2D
  ipt::ipt<float>(arr, sx, sy, sz);      // 3D
  ipt::ipt<double>(arr, sx, sy, sz, sw); // 4D

  return 0;
}

--
Made with <3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastremap-1.13.4.tar.gz (426.0 kB view details)

Uploaded Source

Built Distributions

fastremap-1.13.4-cp311-cp311-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastremap-1.13.4-cp310-cp310-win_amd64.whl (498.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastremap-1.13.4-cp310-cp310-win32.whl (375.3 kB view details)

Uploaded CPython 3.10 Windows x86

fastremap-1.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastremap-1.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastremap-1.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastremap-1.13.4-cp310-cp310-macosx_10_9_x86_64.whl (662.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastremap-1.13.4-cp310-cp310-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastremap-1.13.4-cp39-cp39-win_amd64.whl (507.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastremap-1.13.4-cp39-cp39-win32.whl (382.8 kB view details)

Uploaded CPython 3.9 Windows x86

fastremap-1.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastremap-1.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastremap-1.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastremap-1.13.4-cp39-cp39-macosx_10_9_x86_64.whl (674.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastremap-1.13.4-cp39-cp39-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastremap-1.13.4-cp38-cp38-win_amd64.whl (510.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastremap-1.13.4-cp38-cp38-win32.whl (387.2 kB view details)

Uploaded CPython 3.8 Windows x86

fastremap-1.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastremap-1.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fastremap-1.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastremap-1.13.4-cp38-cp38-macosx_11_0_universal2.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

fastremap-1.13.4-cp38-cp38-macosx_10_9_x86_64.whl (669.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastremap-1.13.4-cp37-cp37m-win_amd64.whl (484.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastremap-1.13.4-cp37-cp37m-win32.whl (375.3 kB view details)

Uploaded CPython 3.7m Windows x86

fastremap-1.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastremap-1.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

fastremap-1.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastremap-1.13.4-cp37-cp37m-macosx_10_9_x86_64.whl (636.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

fastremap-1.13.4-cp36-cp36m-win_amd64.whl (483.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

fastremap-1.13.4-cp36-cp36m-win32.whl (375.3 kB view details)

Uploaded CPython 3.6m Windows x86

fastremap-1.13.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fastremap-1.13.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

fastremap-1.13.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

fastremap-1.13.4-cp36-cp36m-macosx_10_9_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file fastremap-1.13.4.tar.gz.

File metadata

  • Download URL: fastremap-1.13.4.tar.gz
  • Upload date:
  • Size: 426.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4.tar.gz
Algorithm Hash digest
SHA256 77a65182fa66f278af5349cd7d36e4cb24d1f6ff889c296bde73b19752e8cf37
MD5 690549f4b63c2eb877313fb41f0e0d4b
BLAKE2b-256 ad568ca0eeabb68084e430e6414b0df447c10220d6f15cb2f3db2ecdaf817635

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp311-cp311-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.21.0 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for fastremap-1.13.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 013deb1ee29d6d808d2426ff3df5997fd49c592e3cd3f87ff32d9a304e851769
MD5 20e596efe95c252a70c10705ee0b7f03
BLAKE2b-256 1196a3f85a81b2b67e99829c6981a57885fa622b44aaf95c30fc960837564996

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 498.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4662b0e94e64b339769e3660597242c52ae9c1074fd5e9ef938557486540bedd
MD5 d05a8dd9f225ffabb3c21199e7ae3f8c
BLAKE2b-256 1487fd6f0cbf7dca2964fd63de4bf83e497e1cf037eaf310a6fb554d98b4281d

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 375.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ad8fe242a67be915332d4ae09002cc7c06e7354688675fb22b274a5a89102fe0
MD5 b35c0cc9a4f879c5c812b329d815ff79
BLAKE2b-256 37d5b9a7c33530cf5686a0b2c4f604ca7f10c7adf5a0cf65b6bf129d46fc4ec1

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef826ffaf6662acfb2bcb2486484e265e028fc07d2898c0cbd12c3d6b4fca126
MD5 dc5ab0d50b5aebf9c23d277f8fa6b223
BLAKE2b-256 e9eaab53bf659bf665420f59f709ea1ddf2a95f56101239e964b6a8cfd22ec91

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d8b8c9819482556c68482963d6e7696e48b79806ce753315213fa9e1e257554
MD5 3f4b99bf5173f97f463f0b3dc0facd35
BLAKE2b-256 dcf96eb27253e34ee1c1d7ae727172779c3c8b3067997b71d192bc4a06cf9392

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18e3740e6bbd8a9272ac3ed49ee79ade347dcfead10c25729bdfd55cb1221426
MD5 a29eac50d1e9d142670da1d82fe24030
BLAKE2b-256 f072b5538783b56512d829a600458bb84e0bb9aae4b5859b49ff18be67cbc6c1

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 662.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc574f7bb2645ae0c1e68843a141918fc30c1eb9c259545c81afe8818a6b7778
MD5 ac96188bf555ccfdfbfeae4e8db9e77e
BLAKE2b-256 15c6d4a641f83f5597940f029415b187eb7ee633a395619f697c30dd90ba83b1

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a8f8b70d783ad7832b4cc149499a7d2c5168d0ac54e95fd917ff1b7bddee3eb
MD5 6c8c580bc8631526b38989392ca7c5d6
BLAKE2b-256 c3ab132e166da8cef105034c8ae3e001f7a36211cf815b7dc5c4e31fb57c2b49

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 507.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a8ee15500625b923e783f72cf44d40eb66fb36893df96099a63f591f38d912b9
MD5 4ad6d16f2c9d1c262a63dc91a51254ff
BLAKE2b-256 041e95f29fc64b9e6dd703ae8c9412e5480e1a0eed27a347ab493f6f69aacfa2

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 382.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fae4825a3b6a7c16062914a08eef4274d8749d07d75b3a6e6c1a05ee60ffc9c7
MD5 d750bba3e8d6907cf3b4837521797988
BLAKE2b-256 dc2bbda1814c0dae8120e2ecd7d6ef3454490153085fea42c65d4e5e03f069db

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e95825420e6bffb11d18ad781196454db5b0af204ae564be17ed9895bf74e079
MD5 eb7b19d1091dfe470f90c96a1f0dde8a
BLAKE2b-256 2eaa6e46855284a5b10443c9cd94cc9223d2d6e751429d78b1bd0eceab1f2449

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 83fe79a140b560f4f1c33fb3d6328e96eac6cdca292808d01389b31761b54ace
MD5 f5db8a5403cb9a51797d76e225ccac49
BLAKE2b-256 df36931f482317c7252108d9f017d5fad5bd9180e1957d5a76a251d8e11e3d1f

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa000b8cf68b6338bd1234a7e02d600bdc7e30a1c3185e2ff5d0f6193805b797
MD5 e7c572be4648fc14cd33d2de849ab645
BLAKE2b-256 17caed98c0c60fe78799095abe90ec641cca5c48016fecad82feda576cd7b53d

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 674.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b1f87f572f26c3bba8095d23e87378b61ab3abde94895684067fc439aabeb63
MD5 da835dea3f49c70e6dd801e624c8a112
BLAKE2b-256 6dfc28583dd1847c3f28d80afa95cb59a8bef67b94f270158c53087f87ceb933

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0a239870a7c28c615af07a19839262d6efb1bedcac8a87b7d2ebf96b24994df
MD5 057c0254d10c2b5c09850f63b51ae660
BLAKE2b-256 c4bca17f2793e77837bb1a079b39ea8056c1b0eb0383e123ace525f98cb9fb59

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 510.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2d0372375811f4836659fd978ae4eca95130c89c776fca8ba42449600a8ef51f
MD5 95d6f167be3b74a130dcc38af9db35ef
BLAKE2b-256 4d7177e4500b026c7ed02ea210ca3a3779a87f93771009a44e0d62a17dbba014

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 387.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 476693c05618f0af97f48b67373c71a21127ac88325adc7cb245d9aabe0e3d4b
MD5 17360ceb1cfea1df015f6200274295ad
BLAKE2b-256 736112063804d9b27b59ef6493ed493b3b55cf79da457104f005aed838cef767

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 740cd5052a30e38c011ee566033240ce9a2eacdcaf4eea3dd72e3781e0e8f239
MD5 e6810fc8855966a313add2f24f3614b4
BLAKE2b-256 69c79a0c73f2e5708bc0e3f73438c619e44e97df4f2df6e73bd090be632c90b7

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d569e2c1f773a5589af561703d40fe651314f5221bab149fa1df1d5dab544bf8
MD5 0a0a59d8804dabdd1c20b76a118536a7
BLAKE2b-256 23b67c821de5ac242299e30aba0c08aae456b90d3a3840b5664c8e6118f9b52c

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c026202b0df95583f407264b7d6572d6121510beb476af205f09c54ac15a88e
MD5 caa47c83325b23ec98c95bfb609de05b
BLAKE2b-256 7a5ae8b398d2ec2736b818fb88ad95a3586264c850b27f5012060a6927068134

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp38-cp38-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 bbc9c8deb73c41d6e6de64905c8e78ba4b36ac09d99811eb15a12fe3ae694c41
MD5 1f1c6b64c2ee1029dcd3358d5e1e62d0
BLAKE2b-256 2a606e7a47d0f8daf0644399bab13c7b8a03297b9d136746e13f47c99a1db10d

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 669.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92e517915e73a2a42398e32ed549c6e9955b8c27f31521c65ada704da4a24880
MD5 b0936d7abc6d04b61785c3c5c382fe62
BLAKE2b-256 60ca48c4bb93b252af1e4c770e0747f623c1accbb53be40dc443cb177c251bdd

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 484.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6d07f4e02a26740b6f182d7e33098bd2cf80cb26299d8cb77a939abf359af9ed
MD5 33d05a91718f7c51189a07f5b6d2821a
BLAKE2b-256 78b4ae11bc62d6c7f999cdddebe7ef47612a4a064d9287346b08d29f57e7e0d4

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 375.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 976dad2a77cb53c4cbdb1416a9860106ccb56d42ffd46b5ebbedec84b084546b
MD5 bee53de583469cbd1f01c0caf5a6867e
BLAKE2b-256 389cf2887764d7de60362534dc422ef0037ce7fbe658c9cd2de025c5f126cb92

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 066daebe6c89b2d29d9033241a4a73d07a7861639d72f31eedb2bd2d679175c4
MD5 6a8a55f4a2f0c503424c1e5b61a2aba6
BLAKE2b-256 69188b1eed7008f178bc3dd177a199b97b23f574e9eebbdbbf8ce806bbc179ab

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 646f88298dd73c3ecfa51f53a75018ede599c7165065b0475a0ab44faf3bf69e
MD5 77e001c6e7adfb9562bd4d58f327d1c6
BLAKE2b-256 18ee1747c2b2c017f448527ccaa1bc9a8d19ea846832032a2e16b9333271a20c

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d368de6660fd8bac6e61b91ee4d35bf17c85c4a1709c1133ce4568ee9c8620ad
MD5 4132faef805557823bb92354bd5a591f
BLAKE2b-256 5ab3b8297696284212b2d2cc885bc9425025765fbdfaf3841d377bf327feee44

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 636.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e2490b304d61efee2af560e0017fad79c3564a97087fac9130be20ca2b460db
MD5 1805fea518a548ecb0cfe4d7a5d51075
BLAKE2b-256 fd2fa7e7575ade4deab0f11280b218d1f4901d8150c4809a509077dfa3147f8d

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 483.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 83b382d64a4138a237956350cdce11160c7de73c24775555c53b740c1bdab38e
MD5 da6e69555450e0213a5d73e262b9f913
BLAKE2b-256 0aaf4a27e5df8cff0e8ba8cab75b3a40c2066be5dcf276b0be73bc0dcc12b509

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 375.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 eb3c9258d78f51f16a6806f698b0ef56a4639116281619df1c28d2cbcd9b28aa
MD5 a4dfb8dbd1c3056bed8c7127579f1f84
BLAKE2b-256 9dfd4ac461c0053098d4ecbc82d9dacd6cf023d1cda8c312111df9cf82e5d208

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2697f91a21c749a2d9606fa25b3f2d953efa016d4e9c67fa1151dcbabc562aa5
MD5 940cc2cd43b5b2bfe0a50825bab9e632
BLAKE2b-256 df3738481ff002ebb60f5fb02a9db337e561e022746dfe8d004b04bca0d5b758

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d46b416a633084fbd1c5e067a031945a8dec612cebcd1ca9cae0df504646af62
MD5 f61374da411ad135e3e0b35debca6d25
BLAKE2b-256 675ec008d215a59832968babaa3248e8d2303127e29d1748465f81c31623a567

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec4e9f85e252a195dc75d64272577163dd9692cb610b425eff292233e8295095
MD5 477e00c9e0be5868d8545a1bc402830f
BLAKE2b-256 c674595cc418b9fbfbedee5fbd123a09ce242944ebb1c91494bd696a9b3b16cc

See more details on using hashes here.

File details

Details for the file fastremap-1.13.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastremap-1.13.4-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 636.2 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.13

File hashes

Hashes for fastremap-1.13.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5385c43f6b6bbb91cc09841d5519333a042b41d54e2bdb59c3cc1c5480cbed3e
MD5 d8fb90881a6241610849b29d96c3c05d
BLAKE2b-256 a753ad920c39a54f5cbcc13903e4cda66f60bf5203e11392d12541236c58cc00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page