Skip to main content

Feature engineering package with Scikit-learn's fit transform functionality

Project description

Feature Engine

Python 3.6 Python 3.7 Python 3.8 License CircleCI Documentation Status

Feature-engine is a Python library with multiple transformers to engineer features for use in machine learning models. Feature-engine's transformers follow Scikit-learn functionality with fit() and transform() methods to first learn the transforming paramenters from data and then transform the data.

Feature-engine features in the following resources:

Blogs about Feature-engine:

Documentation

Current Feature-engine's transformers include functionality for:

  • Missing data imputation
  • Categorical variable encoding
  • Outlier removal
  • Discretisation
  • Numerical Variable Transformation

Imputing Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddNaNBinaryImputer
  • CategoricalVariableImputer
  • FrequentCategoryImputer
  • ArbitraryNumberImputer

Encoding Methods

  • CountFrequencyCategoricalEncoder
  • OrdinalCategoricalEncoder
  • MeanCategoricalEncoder
  • WoERatioCategoricalEncoder
  • OneHotCategoricalEncoder
  • RareLabelCategoricalEncoder

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • DecisionTreeDiscretiser
  • UserInputDiscreriser

Variable Transformation methods

  • LogTransformer
  • ReciprocalTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Scikit-learn Wrapper:

  • SklearnTransformerWrapper

Installing

pip install feature_engine

or

git clone https://github.com/solegalli/feature_engine.git

Usage

>>> from feature_engine.categorical_encoders import RareLabelCategoricalEncoder
>>> import pandas as pd

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelCategoricalEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

See more usage examples in the jupyter notebooks in the example folder of this repository, or in the documentation: http://feature-engine.readthedocs.io

Contributing

Local Setup Steps

  • Clone the repo and cd into it
  • Run pip install tox
  • Run tox if the tests pass, your local setup is complete

Opening Pull Requests

PR's are welcome! Please make sure the CI tests pass on your branch.

License

BSD 3-Clause

Authors

References

Many of the engineering and encoding functionality is inspired by this series of articles from the 2009 KDD competition.

To learn more about the rationale, functionality, pros and cos of each imputer, encoder and transformer, refer to the Feature Engineering for Machine Learning, Online Course

For a summary of the methods check this presentation and this article

To stay alert of latest releases, sign up at trainindata

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

feature_engine-0.5.12.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

feature_engine-0.5.12-py2.py3-none-any.whl (29.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file feature_engine-0.5.12.tar.gz.

File metadata

  • Download URL: feature_engine-0.5.12.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.2

File hashes

Hashes for feature_engine-0.5.12.tar.gz
Algorithm Hash digest
SHA256 35a91650f59414524d89ffc84c5b99d395a27aebe90f5e7ead7518a38e376d19
MD5 b69c8cddf8d7c6b29e8ebcd081836db7
BLAKE2b-256 de72b29708ccdb986c8be3f7473c6851d5b647b74e32e9b1d9ab083f3ae610fc

See more details on using hashes here.

File details

Details for the file feature_engine-0.5.12-py2.py3-none-any.whl.

File metadata

  • Download URL: feature_engine-0.5.12-py2.py3-none-any.whl
  • Upload date:
  • Size: 29.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.2

File hashes

Hashes for feature_engine-0.5.12-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 266af9fe59285469d24e1f767d1aae489bf45ef1beef7a41a192e697d074a1cd
MD5 b4a99e4a44c73c9b39a673a352c980db
BLAKE2b-256 46e641b5288fbaa2db2ab9161870b68c7617c373e65f7702711c535f2d06557e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page