Skip to main content

Extract Landsat surface reflectance time-series at given location from google earth engine

Project description

Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing

Online documentation available at https://loicdtx.github.io/landsat-extract-gee

https://coveralls.io/repos/github/loicdtx/landsat-extract-gee/badge.svg?branch=master https://travis-ci.org/loicdtx/landsat-extract-gee.svg?branch=master https://badge.fury.io/py/geextract.svg

Introduction

A python library (API + command lines) to extract Landsat time-series from the Google Earth Engine platform. Can query single pixels or spatially aggregated values over polygons. When used via the command line, extracted time-series are written to a sqlite database.

The idea is to provide quick access to Landsat time-series for exploratory analysis or algorithm testing. Instead of downloading the whole stack of Landsat scenes, preparing the data locally and extracting the time-series of interest, which may take several days, geextract allows to get time-series in a few seconds.

Compatible with python 2.7 and 3.

Usage

API

The principal function of the API is ts_extract

from geextract import ts_extract
from datetime import datetime

# Extract a Landsat 7 time-series for a 500m radius circular buffer around
# a location in Yucatan
lon = -89.8107197
lat = 20.4159611
LE7_dict_list = ts_extract(lon=lon, lat=lat, sensor='LE7',
                           start=datetime(1999, 1, 1), radius=500)

Command line

geextract comes with two command lines, for extracting Landsat time-series directly from the command line.

  • gee_extract.py: Extract a Landsat multispectral time-series for a single site. Extracted data are automatically added to a sqlite database.

  • gee_extract_batch.py: Batch order Landsat multispectral time-series for multiple locations.

gee_extract.py --help

# Extract all the LT5 bands for a location in Yucatan for the entire Landsat period, with a 500m radius
gee_extract.py -s LT5 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LE7 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract.py -s LC8 -b 1980-01-01 -lon -89.8107 -lat 20.4159 -r 500 -db /tmp/gee_db.sqlite -site uxmal -table col_1
gee_extract_batch.py --help

# Extract all the LC8 bands in a 500 meters for two locations between 2012 and now
echo "4.7174,44.7814,rompon\n-149.4260,-17.6509,tahiti" > site_list.txt
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LT5 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LE7 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
gee_extract_batch.py site_list.txt -b 1984-01-01 -s LC8 -r 500 -db /tmp/gee_db.sqlite -table landsat_ts
https://github.com/loicdtx/landsat-extract-gee/raw/master/docs/figs/multispectral_uxmal.png

Installation

You must have a Google Earth Engine account to use the package.

Then, in a vitual environment run:

pip install geextract
earthengine authenticate

This will open a google authentication page in your browser, and will give you an authentication token to paste back in the terminal.

You can check that the authentication process was successful by running.

python -c "import ee; ee.Initialize()"

If nothing happens… it’s working.

Benchmark

A quick benchmark of the extraction speed, using a 500 m buffer.

import time
from datetime import datetime
from pprint import pprint
import geextract

lon = -89.8107197
lat = 20.4159611

for sensor in ['LT5', 'LE7', 'LT4', 'LC8']:
    start = time.time()
    out = geextract.ts_extract(lon=lon, lat=lat, sensor=sensor, start=datetime(1980, 1, 1, 0, 0),
                               end=datetime.today(), radius=500)
    end = time.time()

    pprint('%s. Extracted %d records in %.1f seconds' % (sensor, len(out), end - start))
# 'LT5. Extracted 142 records in 1.9 seconds'
# 'LE7. Extracted 249 records in 5.8 seconds'
# 'LT4. Extracted 7 records in 1.0 seconds'
# 'LC8. Extracted 72 records in 2.4 seconds'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geextract-0.5.0.tar.gz (10.0 kB view details)

Uploaded Source

File details

Details for the file geextract-0.5.0.tar.gz.

File metadata

  • Download URL: geextract-0.5.0.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.3

File hashes

Hashes for geextract-0.5.0.tar.gz
Algorithm Hash digest
SHA256 75cc441e178587e13133a7217ea4a15e4f87a20db432a92bc26e69ec2abaf5b3
MD5 ae904e069b0ae57681d6aeaef358ca68
BLAKE2b-256 8c0a06bb883cbbe8d11ba818d8a23a35a38eaed3883a672315dbb8bad18d8ba8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page