Skip to main content

GenET: Genome Editing Toolkit

Project description

Genome Editing Toolkit
Since 2022. 08. 19.

Python PyPI version Slack Documentation Status License

Welcome to GenET

GenET (Genome Editing Toolkit) is a library of various python functions for the purpose of analyzing and evaluating data from genome editing experiments. GenET is still in its early stages of development and continue to improve and expand. Currently planned functions include guideRNA design, saturation library design, deep sequenced data analysis, and guide RNA activity prediction.

System requirement

GenET can be run on either Mac or Linux system. GenET is currently available on Linux or Mac based systems as one of the dependent tools, ViennaRNA package, is limited to these operating systems. Windows users must establish a WSL, docker or virtual OS environment to use this tool.

Installation

1/ Create virtual environment and install genet

# Create virtual env for genet. (python 3.8 was tested)
conda create -n genet python=3.8
conda activate genet

# Install genet ( >= ver. 0.7.0)
pip install genet

2/ Install Pytorch (v1.11.0 was tested)

Pytorch ver.2 is not compatible yet.

# For OSX (MacOS)
pip install torch==1.11.0

# For Linux and Windows
# CUDA 11.3
pip install torch==1.11.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

# CUDA 10.2
pip install torch==1.11.0+cu102 --extra-index-url https://download.pytorch.org/whl/cu102

# CPU only
pip install torch==1.11.0+cpu --extra-index-url https://download.pytorch.org/whl/cpu

3/ Install ViennaRNA

# install ViennaRNA package for prediction module
conda install viennarna

Trouble shooting for installation

1/ GLIBCXX ImportError

ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.20' not found (required by /home/hkim/.miniconda3/envs/genet/lib/python3.8/site-packages/RNA/_RNA.cpython-38-x86_64-linux-gnu.so)'

If the above error message appears in the process of loading the Vienna RNA, install higher version of 'libgcc' using mamba (see alse).

conda activate genet
conda install -c conda-forge mamba
mamba install libgcc

Who should use GenET?

GenET was developed for anyone interested in the field of genome editing. Especially, Genet can provide aid to those with the following objectives.:

  • Develop a quick and easy to design an genome editing experiment for a specific gene.
  • Perform genome editing analysis based on sequening data
  • Predict the activtiy of specific guideRNAs or all guideRNAs designed for editing a specific product.

Tutorial 1: Predict SpCas9 activity (by DeepSpCas9)

DeepSpCas9 is a prediction model developed to evaluate to indel frequency introduced by sgRNAs at specific target sites mediated by the SpCas9 (Kim et al. SciAdv 2019). The model was developed on tensorflow (version >= 2.6). Any dependent packages will be installed along with the GenET package.

from genet.predict import SpCas9

# Put the target context (30bp) that you want to find Cas9 activity in the list.
# Input seq: 4bp 5' context + 20 guide + 3bp PAM + 3bp 3' context

spcas = SpCas9()

list_target = [
                'TCACCTTCGTTTTTTTCCTTCTGCAGGAGG',
                'CCTTCGTTTTTTTCCTTCTGCAGGAGGACA',
                'CTTTCAAGAACTCTTCCACCTCCATGGTGT',
                ]
                
df_out = spcas.predict(list_target)

>>> df_out
Target Spacer SpCas9
0 TCACCTTCGTTTTTTTCCTTCTGCAGGAGG CTTCGTTTTTTTCCTTCTGC 2.801172
1 CCTTCGTTTTTTTCCTTCTGCAGGAGGACA CGTTTTTTTCCTTCTGCAGG 2.253288
2 CTTTCAAGAACTCTTCCACCTCCATGGTGT CAAGAACTCTTCCACCTCCA 53.43182

Alternatively, you can identify all possible SpCas9 target sites within an extensive gene sequence and obtain predictive scores.

from genet.predict import SpCas9

# Put the whole sequence context that you want to find Cas9 target site.
gene = 'ttcagctctacgtctcctccgagagccgcttcaacaccctggccgagttggttcatcatcattcaacggtggccgacgggctcatcaccacgctccattatccagccccaaagcgcaacaagcccactgtctatggtgtgtcccccaactacgacaagtgggagatggaacgcacggacatcaccatgaagcacaagctgggcgggggccagtacggggaggtgtacgagggcgtgtggaagaaatacagcctgacggtggccgtgaagaccttgaaggtagg'
                
spcas = SpCas9()
df_out = spcas.search(gene)

>>> df_out.head()
Target Spacer Strand Start End SpCas9
0 CCTCCGAGAGCCGCTTCAACACCCTGGCCG CGAGAGCCGCTTCAACACCC + 15 45 67.39446
1 GCCGCTTCAACACCCTGGCCGAGTTGGTTC CTTCAACACCCTGGCCGAGT + 24 54 27.06508
2 CCGAGTTGGTTCATCATCATTCAACGGTGG GTTGGTTCATCATCATTCAA + 42 72 34.11356
3 AGTTGGTTCATCATCATTCAACGGTGGCCG GGTTCATCATCATTCAACGG + 45 75 76.43662
4 TCATCATCATTCAACGGTGGCCGACGGGCT CATCATTCAACGGTGGCCGA + 52 82 29.63767

Tutorial 2: Predict SpCas9variants activity (by DeepSpCas9variants)

DeepSpCas9 is a prediction model developed to evaluate to indel frequency introduced by sgRNAs at specific target sites mediated by the SpCas9 PAM variants (Kim et al. Nat.Biotechnol. 2020). The model was developed on tensorflow (version >= 2.6). Any dependent packages will be installed along with the GenET package.

from genet.predict import CasVariant

# Available Cas9 variants: 
# SpCas9-NG, SpCas9-NRCH, SpCas9-NRRH, SpCas9-NRTH, SpCas9-Sc++, SpCas9-SpCas9, SpCas9-SpG, SpCas9-SpRY, SpCas9-VRQR
cas_ng = CasVariant('SpCas9-NG')

# Put the target context (30bp) that you want to find Cas9 activity in the list.
# Input seq: 4bp 5' context + 20 guide + 3bp PAM + 3bp 3' context

list_target30 = [
                'TCACCTTCGTTTTTTTCCTTCTGCAGGAGG',
                'CCTTCGTTTTTTTCCTTCTGCAGGAGGACA',
                'CTTTCAAGAACTCTTCCACCTCCATGGTGT',
                ]
                
df_out = cas_ng.predict(list_target30)

>>> df_out
Target Spacer SpCas9-NG
0 TCACCTTCGTTTTTTTCCTTCTGCAGGAGG CTTCGTTTTTTTCCTTCTGC 0.618299
1 CCTTCGTTTTTTTCCTTCTGCAGGAGGACA CGTTTTTTTCCTTCTGCAGG 1.134845
2 CTTTCAAGAACTCTTCCACCTCCATGGTGT CAAGAACTCTTCCACCTCCA 36.74358

Similarly, in CasVariants, you can also utilize the 'search' method. It automatically identifies targets corresponding to each PAM variant and calculates predictive scores. For instance, SpCas9-NRCH identifies NG+NA+NNG PAMs.

from genet.predict import CasVariant

# Put the whole sequence context that you want to find Cas9Variants target site.
gene = 'ttcagctctacgtctcctccgagagccgcttcaacaccctggccgagttggttcatcatcattcaacggtggccgacgggctcatcaccacgctccattatccagccccaaagcgcaacaagcccactgtctatggtgtgtcccccaactacgacaagtgggagatggaacgcacggacatcaccatgaagcacaagctgggcgggggccagtacggggaggtgtacgagggcgtgtggaagaaatacagcctgacggtggccgtgaagaccttgaaggtagg'
                

cas_ng = CasVariant('SpCas9-NRCH')
df_out = cas_ng.search(gene)

>>> df_out.head()
Target Spacer Strand Start End SpCas9-NRCH
0 TCAGCTCTACGTCTCCTCCGAGAGCCGCTT CTCTACGTCTCCTCCGAGAG + 1 31 26.43327
1 CAGCTCTACGTCTCCTCCGAGAGCCGCTTC TCTACGTCTCCTCCGAGAGC + 2 32 40.16034
2 CTACGTCTCCTCCGAGAGCCGCTTCAACAC GTCTCCTCCGAGAGCCGCTT + 7 37 47.06001
3 TACGTCTCCTCCGAGAGCCGCTTCAACACC TCTCCTCCGAGAGCCGCTTC + 8 38 20.26012
4 CGTCTCCTCCGAGAGCCGCTTCAACACCCT TCCTCCGAGAGCCGCTTCAA + 10 40 45.58047

Tutorial 3: Predict Prime editing efficiency (by DeepPrime and DeepPrime-FT)

DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing (Yu et al. Cell 2023). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch.

from genet.predict import DeepPrime

seq_wt   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'

pegrna = DeepPrime('Test', seq_wt, seq_ed, edit_type='sub', edit_len=1)

# check designed pegRNAs
>>> pegrna.features
ID WT74_On Edited74_On PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len type_sub type_ins type_del Tm1 Tm2 Tm2new Tm3 Tm4 TmD nGCcnt1 nGCcnt2 nGCcnt3 fGCcont1 fGCcont2 fGCcont3 MFE3 MFE4 DeepSpCas9_score
0 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxxCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 7 35 42 34 1 1 1 0 0 16.19097 62.1654 62.1654 -277.939 58.22525 -340.105 5 16 21 71.42857 45.71429 50 -10.4 -0.6 45.96754
1 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxCCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 8 35 43 34 1 1 1 0 0 30.19954 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 75 45.71429 51.16279 -10.4 -0.6 45.96754
2 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 9 35 44 34 1 1 1 0 0 33.78395 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 66.66667 45.71429 50 -10.4 -0.6 45.96754
3 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxCACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 10 35 45 34 1 1 1 0 0 38.51415 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 70 45.71429 51.11111 -10.4 -0.6 45.96754
4 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 11 35 46 34 1 1 1 0 0 40.87411 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 63.63636 45.71429 50 -10.4 -0.6 45.96754
5 Test ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 12 35 47 34 1 1 1 0 0 40.07098 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 58.33333 45.71429 48.93617 -10.4 -0.6 45.96754

Next, select model PE system and run DeepPrime

pe2max_output = pegrna.predict(pe_system='PE2max', cell_type='HEK293T')

>>> pe2max_output.head()
Target Spacer RT-PBS PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len PE2max_score
0 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG 7 35 42 34 1 1 0.904907
1 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG 8 35 43 34 1 1 2.377118
2 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT 9 35 44 34 1 1 2.613841
3 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG 10 35 45 34 1 1 3.643573
4 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT 11 35 46 34 1 1 3.770234

The previous function, pe_score(), is still available for use. However, please note that this function will be deprecated in the near future.

from genet import predict as prd

# Place WT sequence and Edited sequence information, respectively.
# And select the edit type you want to make and put it in.
#Input seq: 60bp 5' context + 1bp center + 60bp 3' context (total 121bp)

seq_wt   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
alt_type = 'sub1'

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type)
df_pe.head()
Target Spacer RT-PBS PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len PE2max_score
0 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG 7 35 42 34 1 1 0.904907
1 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG 8 35 43 34 1 1 2.377118
2 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT 9 35 44 34 1 1 2.613841
3 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG 10 35 45 34 1 1 3.643573
4 ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... ATAAAAGACAACACCCTTGCCTTGTGGAGT CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT 11 35 46 34 1 1 3.770234

If you wanna see biofeatures using pe_score(),

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type, show_features=True)
df_pe.head()
ID WT74_On Edited74_On PBSlen RTlen RT-PBSlen Edit_pos Edit_len RHA_len type_sub type_ins type_del Tm1 Tm2 Tm2new Tm3 Tm4 TmD nGCcnt1 nGCcnt2 nGCcnt3 fGCcont1 fGCcont2 fGCcont3 MFE3 MFE4 DeepSpCas9_score PE2max_score
0 Sample ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxxCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 7 35 42 34 1 1 1 0 0 16.19097 62.1654 62.1654 -277.939 58.22525 -340.105 5 16 21 71.42857 45.71429 50 -10.4 -0.6 45.96754 0.904907
1 Sample ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxxCCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 8 35 43 34 1 1 1 0 0 30.19954 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 75 45.71429 51.16279 -10.4 -0.6 45.96754 2.377118
2 Sample ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxxACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 9 35 44 34 1 1 1 0 0 33.78395 62.1654 62.1654 -277.939 58.22525 -340.105 6 16 22 66.66667 45.71429 50 -10.4 -0.6 45.96754 2.613841
3 Sample ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxxCACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 10 35 45 34 1 1 1 0 0 38.51415 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 70 45.71429 51.11111 -10.4 -0.6 45.96754 3.643573
4 Sample ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG xxxxxxxxxxACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx 11 35 46 34 1 1 1 0 0 40.87411 62.1654 62.1654 -277.939 58.22525 -340.105 7 16 23 63.63636 45.71429 50 -10.4 -0.6 45.96754 3.770234

It is also possible to predict other cell lines (A549, DLD1...) and PE systems (PE2max, PE4max...).

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type, sID='MyGene', pe_system='PE4max', cell_type='A549')

Tutorial 4: Get ClinVar record and DeepPrime score using GenET

ClinVar database contains mutations that are clinically evaluated to be pathogenic and related to human diseases(Laudrum et al. NAR 2018). GenET utilized the NCBI efect module to access ClinVar records to retrieve related variant data such as the genomic sequence, position, and mutation pattern. Using this data, genET designs and evaluates pegRNAs that target the variant using DeepPrime.

from genet import database as db

# Accession (VCV) or variantion ID is available
cv_record = db.GetClinVar('VCV000428864.3')

print(cv_record.seq()) # default context length = 60nt

>>> output: # WT sequence, Alt sequence
('GGTCACTCACCTGGAGTGAGCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGC',
 'GGTCACTCACCTGGAGTGAGCCCTGCTCCCCCCTGGCTCCTTCCCAGCCTGGGCATCCTTGTTCCAAGGCCTCATTCAGCTCTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAG')

In addition, various information other than the sequence can be obtained from the record.

# for example, variant length of the record
print(cv_record.alt_len)

>>> output:
2

Clinvar records obtained through this process is used to design all possible pegRNAs within the genet.predict module's pecv_score function.

from genet import database as db
from genet import predict as prd

cv_record = db.GetClinVar('VCV000428864.3')
prd.pecv_score(cv_record)

Tutorial 5: Make additional synonymous mutations in pegRNA (GenET design module)

from genet import predict
from genet import design

seq_wt   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed   = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
alt_type = 'sub1'

df_pe = predict.pe_score(seq_wt, seq_ed, alt_type)

# Select pegRNA that you want to add synonymous mutation 
# The record type should be pd.Series
dp_record = df_pe.iloc[20]

synony_pegrna = design.SynonymousPE(dp_record, ref_seq=seq_wt, frame=1)

pegrna_ext = synony_pegrna.extension

Tutorial 6: Get Gene information from NCBI (GenET database module)

The database module is used to retrieve sequence and feature information regarding the target gene of interest. This process is based on the Entrez module on biopython. Currently, obtaining only the meta data cooresponding to each feature is available, but in the future, we plan to implement sequence retreival followed by full preprocessing of neccesary information required for genome editing.

ex) Retrieve gene info from NCBI

from genet import database as db
# If you import for the first time, you have to enter an email.
# This is because it is required to leave a log when accessing NCBI's Entrez database.

brca1 = db.GetGene('BRCA1')

list_exons = brca1.exons()
list_exons

>>> output:
[SeqFeature(FeatureLocation(ExactPosition(92500), ExactPosition(92713), strand=1), type='exon'),
 SeqFeature(FeatureLocation(ExactPosition(93868), ExactPosition(93967), strand=1), type='exon'),
 SeqFeature(FeatureLocation(ExactPosition(102204), ExactPosition(102258), strand=1), type='exon'),
 SeqFeature(FeatureLocation(ExactPosition(111450), ExactPosition(111528), strand=1), type='exon'),
 SeqFeature(FeatureLocation(ExactPosition(113027), ExactPosition(113116), strand=1), type='exon'),
......
]

Please send all comments and questions to gsyu93@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

genet-0.9.0-py3-none-any.whl (58.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page