Skip to main content

Lightweight reader for raster files

Project description

georeader

Article DOI:10.1038/s41598-023-47595-7 GitHub release (latest SemVer including pre-releases) PyPI PyPI - Python Version PyPI - License

Read data from rasters: very few dependencies, reads from cloud storage and lazy loading.

Install

# From pip
pip install georeader-spaceml

# From GitHub
pip install git+https://github.com/spaceml-org/georeader#egg=georeader

# Install with Google dependencies (to read objects from Google Cloud Storage or Google Earth Engine)
pip install git+https://github.com/spaceml-org/georeader#egg=georeader[google]

# Install with Planetary Computer requirements
pip install git+https://github.com/spaceml-org/georeader#egg=georeader[microsoftplanetary]

Getting started

# This snippet requires:
# pip install fsspec gcsfs google-cloud-storage
import os
os.environ["GS_NO_SIGN_REQUEST"] = "YES"

from georeader.readers import S2_SAFE_reader
from georeader import read

cords_read = (-104.394, 32.026) # long, lat
crs_cords = "EPSG:4326"
s2_safe_path = S2_SAFE_reader.s2_public_bucket_path("S2B_MSIL1C_20191008T173219_N0208_R055_T13SER_20191008T204555.SAFE")
s2obj = S2_SAFE_reader.s2loader(s2_safe_path, 
                                out_res=10, bands=["B04","B03","B02"])

# copy to local avoids http errors specially when not using a Google project.
# This will only copy the bands set up above B04, B03 and B02
s2obj = s2obj.cache_product_to_local_dir(".")

# See also read.read_from_bounds, read.read_from_polygon for different ways of croping an image
data = read.read_from_center_coords(s2obj,cords_read, shape=(2040, 4040),
                                    crs_center_coords=crs_cords)

data_memory = data.load() # this loads the data to memory

data_memory # GeoTensor object
>>  Transform: | 10.00, 0.00, 537020.00|
| 0.00,-10.00, 3553680.00|
| 0.00, 0.00, 1.00|
         Shape: (3, 2040, 4040)
         Resolution: (10.0, 10.0)
         Bounds: (537020.0, 3533280.0, 577420.0, 3553680.0)
         CRS: EPSG:32613
         fill_value_default: 0

In the .values attribute we have the plain numpy array that we can plot with show:

from rasterio.plot import show
show(data_memory.values/3500, transform=data_memory.transform)
awesome georeader

Saving the GeoTensor as a COG GeoTIFF:

from georeader.save import save_cog

# Supports writing in bucket location (e.g. gs://bucket-name/s2_crop.tif)
save_cog(data_memory, "s2_crop.tif", descriptions=s2obj.bands)

Tutorials

Sentinel-2:

Other:

Used in other projects:

Citation

If you find this code useful please cite:

@article{portales-julia_global_2023,
	title = {Global flood extent segmentation in optical satellite images},
	volume = {13},
	issn = {2045-2322},
	doi = {10.1038/s41598-023-47595-7},
	number = {1},
	urldate = {2023-11-30},
	journal = {Scientific Reports},
	author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
	month = nov,
	year = {2023},
	pages = {20316},
}
@article{ruzicka_starcop_2023,
	title = {Semantic segmentation of methane plumes with hyperspectral machine learning models},
	volume = {13},
	issn = {2045-2322},
	url = {https://www.nature.com/articles/s41598-023-44918-6},
	doi = {10.1038/s41598-023-44918-6},
	number = {1},
	journal = {Scientific Reports},
	author = {Růžička, Vít and Mateo-Garcia, Gonzalo and Gómez-Chova, Luis and Vaughan, Anna, and Guanter, Luis and Markham, Andrew},
	month = nov,
	year = {2023},
	pages = {19999},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

georeader-spaceml-1.0.17.tar.gz (135.3 kB view details)

Uploaded Source

Built Distribution

georeader_spaceml-1.0.17-py3-none-any.whl (139.0 kB view details)

Uploaded Python 3

File details

Details for the file georeader-spaceml-1.0.17.tar.gz.

File metadata

  • Download URL: georeader-spaceml-1.0.17.tar.gz
  • Upload date:
  • Size: 135.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for georeader-spaceml-1.0.17.tar.gz
Algorithm Hash digest
SHA256 f9ee118f306482dc78b8fab30bc9d1e00e3195a3cae12af8f247cc72cc7fa743
MD5 fc310589326b68c305a719f43fa3c872
BLAKE2b-256 ddc3f47370b3360d4205fa9eb2d26583f567d5822789bdbf5fbafebe599d9b2d

See more details on using hashes here.

Provenance

File details

Details for the file georeader_spaceml-1.0.17-py3-none-any.whl.

File metadata

File hashes

Hashes for georeader_spaceml-1.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 caa9373ced5138d9153ed5807dec13c7664bab39d5e17a2775f31abebf5b7055
MD5 c70e0b48bfd5c9a279d8612828e8ebc0
BLAKE2b-256 4c1fd001eeb5f51ef66cc93dfc65cca0a4af795970e24884f69756ee182b3256

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page