Skip to main content

掘金量化 掘金3 sdk

Project description

掘金量化

A股实盘量化 中国期货量化 程序化交易 仿真 中国量化第一 掘金3 sdk

Changelog

Version v3.0.183

  • fix: 新环境安装protobuf默认安装的最新版本存在兼容问题,增加版本限制

Version v3.0.182

  • fix: 当策略没有关联账号时 get_account接口返回所有实时账号问题.

Version v3.0.181

  • fix: 升级c api, 修复linux版本依赖库缺失的问题
  • feat: order_batch增加委托属性order_style=1
  • other: 调整protobuf依赖版本

Version v3.0.180

  • feat: 支持bus消息交互功能。相关api:
    • set_option
    • on_customized_message
    • send_msg_to_bus
  • other: subscribe在不需要设置count的场景下,参数count默认值修改为0。解决在回测过程中因该参数默认值为1导致每次订阅都需要从后台查询数据影响回测性能的问题.

Version v3.0.179

  • fix: 回测模式下订阅多频度数据时context.data重复记录问题
  • fix: 实时模式subscribe订阅多频度数据且wait_group=True时,出现只推送了单个频度数据的情况,出现频率跟订阅代码行情活跃情况有关
  • fix: 回测时run返回-1错误问题
  • other: 优化python3.12+环境调用get_trading_dates_by_year出现DataFrame.applyMap弃用警告
  • other: 修正get_open_call_auction返回类型描述

Version v3.0.178

  • fix: 过滤重复推送的委托状态与成交(主要是账号重登录引起)
  • fix:龙虎榜接口(stk_abnor_change_detailstk_abnor_change_stocks)在df=False情况下没有返回"零"值字段的问题
  • feat: 新增接口last_price, 查询历史L2 Tick行情
  • feat: 新增run回测参数backtest_intraday
  • feat: algo_orderorder数据增加字段(origin_productorigin_module)

Version v3.0.177

  • fix: 修复正常回测时,报日期格式不正确问题
  • feat: 支持python3.13

Version v3.0.176

  • feat: get_symbol_infos、get_symbols、get_history_symbol 增加返回字段 delisting_begin_date(退市整理开始日)
  • feat: 增加get_open_call_auction 查询开盘集合竞价
  • feat: 增加current_price 查询当前最新价
  • perf: 回测过程变更订阅条件时,如果变更后与之前比较无变化,则回测速度影响不大

Version v3.0.175

  • fix: 实时模式下策略结束后策略进程异常挂起

Version v3.0.174

  • feat: 支持算法单批量委托,关联api:
    • algo_order_batch

Version v3.0.173

  • feat: 新增标的池功能, 关联api:
    • universe_delete
    • universe_set
    • universe_get_names
    • universe_get_symbols
  • refactor: 标记部分弃用函数, 替换函数参照 新老数据函数切换对照表

Version v3.0.172

  • fix: numpy2语法兼容。 由于numpy2移除了np.NAN,当有空字段返回时会报错
  • feat: 股票分红接口stk_get_dividend、基金分红接口fnd_get_dividend 增加返回字段dvd_target
  • feat: order_volume 支持期货条件单
  • feat: 新增数据接口
    • stk_get_money_flow
    • stk_get_finance_audit
    • stk_get_finance_forecast
    • fnd_get_share
    • bnd_get_analysis

Version v3.0.171

  • fix: 退订后再次订阅数据context.data数据异常
  • fix: 同时存在waitgroup=true和waitgroup=false的订阅时触发on_bar会导致程序崩溃

Version v3.0.170

  • fix: 订阅多标的、多频率情况下出现context.data缓存异常

Version v3.0.169

  • fix: 当历史bar数量少于订阅行情时设置的订阅数据滑窗大小时,context.data会出现重复数据。
  • feat: 增加账号连接状态枚举值
  • feat: 增加wheel依赖,避免新python环境安装出错
  • other: 升级capi到3.7.8。
    • fix: 修正回测下单时交易事件错误时序问题
    • fix: 回测时委托回报添加待报和已报状态

Version v3.0.168

  • fix: option_calculate_ivsurface 接口调用出错
  • refactor: 优化对接实时行情服务的兼容性
  • feat: 支持pandas2numpy2

Version 3.0.167

  • feat: 支持多源行情
  • feat: 支持ctp行情直连, 可通过set_option接口设置ctp_md_info参数来配置ctp行情连接信息
  • feat: 行情连接、断开回调触发时可通过 context.message 来获取描述信息
  • feat: 回测模式下在策略代码中提前订阅行情再调用current,会根据订阅频度(tick,分钟bar,日线)取回测当前时刻的最新价格返回,超出历史行情权限会报错中止回测;不订阅current会取回测当前时刻最近的日线收盘价返回

Version 3.0.166

  • fix: current 没有返回"0"值字段
  • fix: get_instruments、get_history_instruments 查询参数fields包含 is_adjusted 时,is_adjusted字段没有返回
  • feat: 新增期货每日成交持仓排名接口(多标的多指标)

Version 3.0.165

  • fix: 单独订阅 3600s 与 同时订阅 tick 和 3600s 所产生的 3600s 数据 open 和 high 不一致
  • fix: context.data在回测模式下盘中可以取到当天的日线数据(未来数据)
  • feat: 支持Python 3.12

Version 3.0.164

  • 修复 context.data 函数bug
  • 移除 arrow 库依赖, 改为使用 Python 原生日期库

Version 3.0.163

  • context.data 优化, 增加两种新的返回类型
  • 新增龙虎榜和北向资金接口
  • 增加 get_cash 和 get_position 接口

Version 3.0.162

  • 添加新的回调函数, on_customized_message - 定制消息推送事件
  • 修改回测时间错误提示文案
  • 日内回测行情提取逻辑调整, 匹配单次33000条记录限制
  • 修正回测内存过大问题
  • 优化 history 和 history_n 速度
  • 增加 tzdata 依赖, 解决 tick 和 bar 转换为 pandas DataFrame 时过慢问题

Version 3.0.161

  • current 函数添加 include_call_auction 入参

Version 3.0.160

  • SDK 支持 Python 3.11 版本
  • 对不常用到的依赖库设置为可选依赖项, 现在默认移除 scipy 库的依赖, 要下载所有依赖可使用 pip install gm[all] 命令
  • Pandas 的默认精度改为8位小数
  • 修复 tick 回测模式 created_at 字段毫秒数错误问题
  • 添加新枚举值, 委托类型 OrderType 相关

Version 3.0.159

  • 修复context.data报错问题

Version 3.0.158

  • 修复context.data取日线数据少了最近一天的问题
  • 修复回测模式下,订阅用了wait_group=True,导致定时任务处理时间不对问题
  • Tick增加iopv字段
  • 交易所增加广期所

Version 3.0.157

  • 修正 Order 对象被错误过滤掉 order_business 和 position_src 字段的问题

Version 3.0.156

  • 新增做市API
  • 新增10个财务接口
  • 修复get_history_instruments接口conversion_price字段取数错误问题
  • get_symbols增加股转作市业务相关字段
  • 修正回测错误时,返回错误码与扩展信息不一致问题
  • 增加枚举常量 OrderBusiness_MARKET_MAKING

Version 3.0.155

  • 两融API改造, 补全头寸来源 position_src, 负债合约编号 debtsno 和还款方式 repay_type 三个字段
  • 修复 context.data 获取日线bar时有重复数据的bug
  • current 接口支持 field 过滤
  • 修复 stk_get_index_constituents 接口返回值 weight 为 0 bug
  • Python3.9 的 pandas 库 1.5 版本有bug, 在转带时区的datetime数据时非常慢, 限制 pandas 库的最高版本号避免

Version 3.0.154

  • 修正用广发端时AccountStatus事件中account_name缺失问题
  • 修正AccountStatus状态为6问题
  • SDK 报错提示错误信息文案优化
  • 支持分布式部署, Linux SDK 现在可以连上终端
  • 修复投研数据查询接口返回值时间格式问题
  • 指数成分查询函数stk_get_index_constituents增加总市值和流通市值字段
  • 优化回测时 on_tick 和 on_bar 的性能瓶颈
  • 修复行情连接断开又连上后,订阅行情成功策略却退出问题
  • context.account().status 的类型改为 dict 类型

Version 3.0.153

  • 修复 SDK Python 3.10 版本的第三方依赖库兼容性问题

Version 3.0.152

  • 修复部分老接口日期格式兼容问题
  • 修复 grpc 网络错误问题
  • 限制第三方库最高版本以保证兼容性

Versino 3.0.151

  • 修正使用数据代理时还在读取sdk缓存问题
  • 优化 SDK 依赖项, 保证 SDK 安装兼容性

Version 3.0.150

  • 本地数据代理优化
  • SDK 报错机制改造
  • 新增接口 set_option - 设置策略运行系统选项, 目前支持设置回测运行的最大线程数和触发流控时最大等待时间
  • 优化回测时的超时机制,避免部分回测业务不正常
  • 添加枚举量, 新的委托拒绝原因
  • 接口变更, 查询指数成分股接口新增 trade_date 参数
  • 修复 AccountStatus 查询与推送系列问题
  • 回测模式下载数据时打印相关指引信息

Version 3.0.149

  • 新增广发期权组合保证金API

Version 3.0.148

  • 新增财务数据接口
  • 修复已知 bug

Version 3.0.147

  • 修复启动速度过慢的问题
  • 修复调用 get_history_symbols 接口时进程崩溃退出问题

Version 3.0.146

  • 修复 get_symbols 和 get_history_symbols 接口 bug
  • Tick 类型添加 ask_q, bid_q 字段

Version 3.0.145

  • 新增投研数据查询接口
  • 修复 ipo_get_match_number 和 ipo_get_lot_info 函数日期参数传输错误 bug
  • 修复 get_history_instruments 函数返回值不存在 info 字段时产生的 Bug
  • 修复用 in 判断 BarLikeDict2 对象时无法退出的 bug

Version 3.0.144

  • 修复 get_history_instruments 返回错误的调整标志的 Bug

Version 3.0.143

  • 增加接口 bond_convertible_get_call_info - 查询可转债赎回信息

Version 3.0.142

  • context.data 获取 tick 时返回格式修正为 DataFrame
  • get_history_instrument 增加可转债字段
  • 支持 Python3.10, 弃用 Python2.7

Version 3.0.141

  • 限制 protobuf 版本小于 4.0 防止不兼容情况
  • 修复 get_history_instruments 里获取的保证金比例 margin_ratio 获取的是最新数据而不是历史数据的问题

Version 3.0.140

  • 算法单新增 algo_params 字段
  • 兼容老版本客户端传入错误的默认参数 undefined 的情况
  • 实时模式能正确返回错误信息
  • instrument 添加 conversion_price 字段

Version 3.0.139

  • 修复 Python 3.7.1 版本 typing_extensions 依赖问题, typing_extensions 版本需要大于等于 4.1.1
  • 增加 get_expire_rest_days 查询到期剩余天数
  • 修改 option_covered_open 备兑开仓, 在回测/仿真模式下不占用保证金
  • 修改 option_covered_close 备兑平仓, 在回测/仿真模式下不释放保证金
  • 新增 option_preorder_valid_volume 备兑标志, 可获取备兑可开数量
  • run 函数新增 backtest_match_mode 参数, 设置回测撮合模式, 可设定市价单是否采用当前 bar/tick 撮合成交

Version 3.0.138

  • 策略进程退出前, SDK主动退订已订阅代码, 恢复订阅权限
  • 修复回测模式中在 on_bar 或 on_tick 里下单后资金和持仓没有变化的问题
  • 兼容 Pandas 1.4.0 以上版本
  • option_get_symbols_by_exchange 增加参数 adjust_flag
  • 修复 get_history_instruments 返回的 multiplier 和 exercise_price 字段只取最新数据问题
  • 之前对所有的浮点数四舍五入改为仅对价格类的字段四舍五入4位小数
  • run 添加参数 backtest_commission_unit, 表示回测手续费需要按张收取
  • option_get_symbols_by_in_at_out 添加参数 adjust_flag 来决定选择的合约范围是否包含调整过的合约
  • 修复 get_instruments 的 exchanges 不支持list格式问题
  • 增加针对剩余时间t=0导致分母为0的健壮性处理, 定价模型计算时剩余时间最小值设置为 0.01

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

gm-3.0.183-cp313-cp313-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.13Windows x86-64

gm-3.0.183-cp313-cp313-manylinux1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.13

gm-3.0.183-cp312-cp312-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.12Windows x86-64

gm-3.0.183-cp312-cp312-manylinux1_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.12

gm-3.0.183-cp311-cp311-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.11Windows x86-64

gm-3.0.183-cp311-cp311-win32.whl (4.6 MB view details)

Uploaded CPython 3.11Windows x86

gm-3.0.183-cp311-cp311-manylinux1_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11

gm-3.0.183-cp310-cp310-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.10Windows x86-64

gm-3.0.183-cp310-cp310-win32.whl (4.6 MB view details)

Uploaded CPython 3.10Windows x86

gm-3.0.183-cp310-cp310-manylinux1_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.10

gm-3.0.183-cp39-cp39-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.9Windows x86-64

gm-3.0.183-cp39-cp39-win32.whl (4.6 MB view details)

Uploaded CPython 3.9Windows x86

gm-3.0.183-cp39-cp39-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9

gm-3.0.183-cp38-cp38-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.8Windows x86-64

gm-3.0.183-cp38-cp38-win32.whl (4.6 MB view details)

Uploaded CPython 3.8Windows x86

gm-3.0.183-cp38-cp38-manylinux1_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.8

gm-3.0.183-cp37-cp37m-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

gm-3.0.183-cp37-cp37m-win32.whl (4.6 MB view details)

Uploaded CPython 3.7mWindows x86

gm-3.0.183-cp37-cp37m-manylinux1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m

gm-3.0.183-cp36-cp36m-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.6mWindows x86-64

gm-3.0.183-cp36-cp36m-win32.whl (4.6 MB view details)

Uploaded CPython 3.6mWindows x86

gm-3.0.183-cp36-cp36m-manylinux1_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.6m

File details

Details for the file gm-3.0.183-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c7d1e5d182a590103bf5079acdd6f0b84d4c59c68823cea1d3f20970f5fcda68
MD5 46b23db8e46842c2ee1c103b9fcf337a
BLAKE2b-256 e35b95ecd806723a3f5c00aec15a9d70c055e02208ad221e298cc001bfdb6f07

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp313-cp313-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp313-cp313-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 14342c251ba2c46c32a5835dba45061d645876e1a656a1e64aa7d4619daec1dc
MD5 1f66acf12029a9abf5a81e9d70191182
BLAKE2b-256 995ce0db09e22d5814323e0962f0bd64f0223bd6073b2feb0d41fabc623c87fe

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dae79f0df347a7203d94be0d701be005c247ae59ffda42eb94bd0eb482a2e5a9
MD5 2d358be2294a9c039b955a5f0d880810
BLAKE2b-256 c422bb7faeea7e3fad8fdd7195fa082cf437a970cd792af2468c04c1839f0dbf

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eafd5259b347ec38e8f3d7598a19ec0295ea8c0df89b5f877c88782a58c36725
MD5 c7941f4211fac2e9a54c750ae7ebd9cd
BLAKE2b-256 faa1ff23f351bccab56b3d1dfac246c3d21f5e7f18f24d77c1883a1fcbffe273

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 91df09cdcf1e7565e29cee4c2ed67a68675ecf4385ad08f1220fbe1f491786bd
MD5 399dc757f0b00252f96ba852c4e5195f
BLAKE2b-256 8e98101eddbe3003ef2580b63a29e36326a20baa050f2f8e2bbd2ed2b9097865

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp311-cp311-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5c3a771be41793bce21339713083879a03ff45178e37c868e98a00c6617d0f8d
MD5 04ed4546047b11c1e0beea642c774586
BLAKE2b-256 964635bb0176a606fe1eb776f557ed829787ad94603ddfc028423703cb5eb040

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6a3a0e68a611c6c3b782d1acd87f9c5cab76a3fd2a690114dc7e16c623949a40
MD5 e6b01d63a71bff2509df7ce8671bd3af
BLAKE2b-256 ebc06736d8f1b4969c2b260d8099acbec5f20e77f619d4b5656f4d8689f61d3a

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7da78820e638cda841bc66e5dfea1d1cd756707d5b0f7ec54323b335fbc9592
MD5 3cffdc56797c7ac894888eb43dce3abd
BLAKE2b-256 03b068ea2e9afb567b589db253a3de754f3ec5c0781b13a43c8d21c003b1abdb

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp310-cp310-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e573c1a6235946b70ae49182454e179adbce87894173cdc0586a9c245b6214ca
MD5 f8ee605bead5e4ef4440d7cffbc07c73
BLAKE2b-256 e08d5eb6c2a4a25d6e0e99a784bd06152cb680286bca922c0dd9cd759605a8b6

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b780a03747f6d5b7ee5958236c8845cd6f27b7d56486ccf3ef2e9811bb7a4388
MD5 db22ff7e6201f60c61e72a4cb2033f16
BLAKE2b-256 941a4515e78a8ba591ad94daaccd63b6bb009393d0004e703a5e9c1ef55d95eb

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f84eab128054e467a2cdc2f597b3b641d71ba69e5a1cd5739295dcafbca2fe12
MD5 84bb615e4ad650ff2b61755b9415517d
BLAKE2b-256 ea5ffc9c163269327d8eb23c00258948957e680255a14bc0122250cf7f44616e

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp39-cp39-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 afc27d4bad0a7fcd9f52d92638093f5359b3c72f2be872f8ccae7c06a23d9f4e
MD5 15e16d20b32694a8e44c95c0221bf93e
BLAKE2b-256 70515c048a641c0cf351180c8c134c7df675478ab9f0ccc6e825b8f61d81b428

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24a596f041ce5c85c135f5ee5285e830010b05bf2c78becba73ea38335e23296
MD5 23745db2d0084bd01c0634e3550e9a84
BLAKE2b-256 0c4af4b430bb92c2c0b840870374fb0c0a624319f365e9b75c7202d9322477f8

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c76ba1000a08a81995b1886ebcdfcf65971e5d6ba64b0b3f14fc986c643de26b
MD5 3240f8d4aada6acc05b1d415605bcbc7
BLAKE2b-256 25b9c7ad2d49a737638d2620211b74f1d68cc0df95a3a03747a64b5c079928d8

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp38-cp38-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp38-cp38-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 19ae8ac5ad28805160a366d4b008104e8e949ac06d9cc9ff246a3f617aca11ba
MD5 2caccc4c27ecb0d7d123df02d6731de2
BLAKE2b-256 d4d6665277f296e912c239dae8c44185cc22808b662bb33a342625faefc40654

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 db13ad7594ee3fcc5e72422b34a1cfa85e400a7b37b8f77698b276fbf591bcd9
MD5 99d3cfff85e622078eef9df46c631771
BLAKE2b-256 e9e74c72f9b21fefebcc47608a71ce1f2412db943571bbc8e43caa4d253764df

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 15db691aad2ca02835c9e5a1dbf46ef40a12a2775ba26f9a8ccfa45093c76efa
MD5 8ad1cf8ae7bb7a319fef7365c4909230
BLAKE2b-256 0d84ff34d4883cc72c47e60085c39d05e532fdbb1e0ff95d8128842723b719ce

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2d0bfa8e18b289549a15d83e9a58aa84829ae5422a4a882e58492127a6975316
MD5 c631976096750325888ff070339c6cbb
BLAKE2b-256 fa83c66af5368bc066c8e9ad7c6501079ab77df2f3e27d7bd194fb71434047e5

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa6626617e0f75abfbfe455db81705254a46f199fafa99c860d1b5b23c60e1c7
MD5 b69c178a6f75dd47dbd5b782abb8a210
BLAKE2b-256 f35301e89568daa60a82297d971e38046f5b72ab8f7b1bfeaa7b42fc05f460cc

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.183-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 48c2eebcebda95d67babf08683dee18b9427721b8ec2ff431ee6923ac18f2dd4
MD5 6dcc9cef40924d67a590e992991d3048
BLAKE2b-256 c4ba5ff43bd73e398a788c51222e668576252d1ff9647d6319ebfdd9a9436be8

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gm-3.0.183-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gm-3.0.183-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b31da1ca8bd8b8c8682c3b8488de63f77ff0a7b0d0e96b903249fc839863a8bb
MD5 85181e3a260a0d1c254dccdbf072d7ce
BLAKE2b-256 5e40c4c55ea7c3e866b6bbc9e64e96442472e826e6717fd18d006cf7401bfbf3

See more details on using hashes here.

File details

Details for the file gm-3.0.183-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.183-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3cf1cf5e182b02419c452f2a22ff775931d0e6aaa2726e81e7e08ecb792140fb
MD5 548740b5beaf21d5972fb57ba124083a
BLAKE2b-256 630484ee1e35970aa86fd8c15b958bcca00010698fbe6f91059985e2dd1f5ea1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page