Skip to main content

Python library for Gaussian Process Regression.

Project description

Build Status Documentation Status

GPlib

A python library for Gaussian Process Regression.

Setup GPlib

  • The following packages must be installed before installing GPlib

# for ptyhon3
apt-get install python3-tk
# or for python2
apt-get install python-tk
  • Create and activate virtualenv (for python2) or venv (for ptyhon3)

# for ptyhon3
python3 -m venv --system-site-packages .env
# or for python2
virtualenv --system-site-packages .env

source .env/bin/activate
  • Upgrade pip

# for ptyhon3
python3 -m pip install --upgrade pip
# or for python2
python -m pip install --upgrade pip
  • Install GPlib package

python -m pip install gplib

Use GPlib

  • Generate some random data.

import numpy as np
data = {
  'X': np.arange(3, 8, 1.0)[:, None],
  'Y': np.random.uniform(0, 2, 5)[:, None]
}
  • Import GPlib to use it in your python script.

import gplib
  • Initialize the GP with the desired modules.

gp = gplib.GP(
  mean_function=gplib.mea.Constant(data),
  covariance_function=gplib.cov.SquaredExponential(data, is_ard=False),
  likelihood_function=gplib.lik.Gaussian(),
  inference_method=gplib.inf.ExactGaussian()
)
  • Plot the GP and the data.

gplib.plot.gp_1d(gp, data)
  • Get the posterior GP given the data.

posterior_gp = gp.get_posterior(data)
  • Finally plot the posterior GP.

gplib.plot.gp_1d(posterior_gp, data)
  • There are more examples in examples/ directory. Check them out!

Develop GPlib

  • Download the repository using git

git clone https://github.com/ibaidev/gplib.git
cd gplib
git config user.email 'MAIL'
git config user.name 'NAME'
git config credential.helper 'cache --timeout=300'
git config push.default simple
  • Update API documentation

source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../gplib

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gplib-0.6.10.tar.gz (29.7 kB view details)

Uploaded Source

Built Distribution

gplib-0.6.10-py2.py3-none-any.whl (57.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file gplib-0.6.10.tar.gz.

File metadata

  • Download URL: gplib-0.6.10.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for gplib-0.6.10.tar.gz
Algorithm Hash digest
SHA256 241e1534ac7d5362bbdf9539d5cb9935bdb0ea19add2f4451f2f41e4b6f35486
MD5 c0f92e68f61de71ba41fde3539873ca6
BLAKE2b-256 0a355e2ded086617de4ca8a7b1cebb8cf489ec49ea87356907b70bb6abc95d2e

See more details on using hashes here.

File details

Details for the file gplib-0.6.10-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for gplib-0.6.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 61cc74a9641a55471d3e0300730b4f022b18155e6b137faed597f73a84b9f40b
MD5 d56fb9644e6a0875dd8661d16b63811f
BLAKE2b-256 be0b16d84e5b21a42f377ce8cbb33b6a65e6fe1f738fadb7b30db43c3ad7f6f7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page