Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEApy: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic https://anaconda.org/bioconda/gseapy/badges/downloads.svg Action Status Documentation Status https://img.shields.io/badge/license-MIT-blue.svg PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets

Tutorial for general usage

Citation

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has 7 sub-commands available: gsea, prerank, ssgsea, gsva, replot enrichr, biomart.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

gsva:

The gsva module performs GSVA method by Hänzelmann et al. The input is same to ssgsea.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

biomart:

The biomart module helps you convert gene ids using BioMart API.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

docs/Preank.py.vs.broad.jpg

See more output here: Example

Installation

Install gseapy package from bioconda or pip.
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy
If pip install failed, use
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 3.7+

Mandatory

  • build
    • Rust: For gseapy > 0.11.0, Rust compiler is needed

    • setuptools-rust

  • run
    • Numpy >= 1.13.0

    • Scipy

    • Pandas

    • Matplotlib

    • Requests

Run GSEApy

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Dev

# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py test

Bug Report

If you would like to report any bugs when use gseapy, don’t hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions

  2. Visit the document site at Examples

  3. The GSEApy discussion channel: Q&A

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-1.1.8.tar.gz (112.5 kB view details)

Uploaded Source

Built Distributions

gseapy-1.1.8-cp313-cp313-win_amd64.whl (419.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

gseapy-1.1.8-cp313-cp313-win32.whl (387.0 kB view details)

Uploaded CPython 3.13 Windows x86

gseapy-1.1.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (621.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (574.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp313-cp313-macosx_11_0_arm64.whl (525.2 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

gseapy-1.1.8-cp312-cp312-win_amd64.whl (419.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

gseapy-1.1.8-cp312-cp312-win32.whl (387.6 kB view details)

Uploaded CPython 3.12 Windows x86

gseapy-1.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (622.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (575.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp312-cp312-macosx_11_0_arm64.whl (525.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gseapy-1.1.8-cp311-cp311-win_amd64.whl (419.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

gseapy-1.1.8-cp311-cp311-win32.whl (387.8 kB view details)

Uploaded CPython 3.11 Windows x86

gseapy-1.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (623.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (574.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp311-cp311-macosx_11_0_arm64.whl (531.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gseapy-1.1.8-cp310-cp310-win_amd64.whl (419.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

gseapy-1.1.8-cp310-cp310-win32.whl (387.6 kB view details)

Uploaded CPython 3.10 Windows x86

gseapy-1.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (623.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (574.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp310-cp310-macosx_11_0_arm64.whl (531.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gseapy-1.1.8-cp39-cp39-win_amd64.whl (419.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

gseapy-1.1.8-cp39-cp39-win32.whl (387.8 kB view details)

Uploaded CPython 3.9 Windows x86

gseapy-1.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (623.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (574.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp39-cp39-macosx_11_0_arm64.whl (531.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gseapy-1.1.8-cp38-cp38-win_amd64.whl (419.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

gseapy-1.1.8-cp38-cp38-win32.whl (387.6 kB view details)

Uploaded CPython 3.8 Windows x86

gseapy-1.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (590.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (622.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (574.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

gseapy-1.1.8-cp38-cp38-macosx_11_0_arm64.whl (531.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gseapy-1.1.8-cp37-cp37m-win_amd64.whl (420.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

gseapy-1.1.8-cp37-cp37m-win32.whl (387.5 kB view details)

Uploaded CPython 3.7m Windows x86

gseapy-1.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (592.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gseapy-1.1.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (623.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

gseapy-1.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (576.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file gseapy-1.1.8.tar.gz.

File metadata

  • Download URL: gseapy-1.1.8.tar.gz
  • Upload date:
  • Size: 112.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8.tar.gz
Algorithm Hash digest
SHA256 013873a7ace7b9141b2a0d2bd85b5ae8b90ffe1e71e78a3cf32729df16f75d57
MD5 f95b505aba80942b90afaa63fd557260
BLAKE2b-256 8f4ed645bd4e45a97a883666a5be051fc1206e089223e1c1f9a992e9f499eae5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 419.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5fd18c8f80531ac63f18f4a293aef27bc2b9bc394329ad90657f10aed98d6559
MD5 38650c62f1612d374201f154a4773410
BLAKE2b-256 d0b07d3c593366da92af740cde694b9f04d67a71e9ebb476dea8d88d82ac496f

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp313-cp313-win32.whl
  • Upload date:
  • Size: 387.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 4eb74aec1a0a25bb74a37bd8121ab5493679cd0c71200d98103b349ef5e0e759
MD5 43c83391e30b8a1769b7844790d69b69
BLAKE2b-256 b6e5c487f50be3898d48487f14a3c6bcdbf4974c7224f9794c058a9fbc28a195

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 688f7f31c2b15ad288907fb0ee258490229cec282fe0d35e6176e918b4048e6b
MD5 c5595c72bcec0b0487d11db3312d4c4a
BLAKE2b-256 015fd3806125c9961ae25a063e0dd8e16769027c13f7673da5aefdc2c2c74c30

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5bc0407e93ddce225afc68c83c415aa4ec4d0c2d776eb70d86d3b2d878468960
MD5 aa25e6d1f92226bddc96360ca573de48
BLAKE2b-256 516b96505b388ac6e4059a8c3a5cd6fe336f8c20744dfa9487b5bc3b5a187ee7

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79da3897d4a6343b6eecb67b3ca2ffc0ffcc853223513829b1c4763dbf594fa5
MD5 747d6c82bcfd2da03c63e2c6902a74eb
BLAKE2b-256 51da422bebe65002090d495134198aaaf4368bc89c9d62ea679bacda2bb5ca33

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b555049d95c8a248323d48f4f1e5225df8f622454dd0143483973359f69f9c8
MD5 d1b3570e31de54fe5a186560c364b667
BLAKE2b-256 658c0dc87a2fb019f7054feb6769dafea602189ba248d919c60f35b9e28e70fc

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 419.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1a6596879692f9f2b88effba43cf6770814a6b09831eace8d03b8fb896fb1cb6
MD5 88ef1a6f89b299be24b2558d6c90a115
BLAKE2b-256 5cc81ae3a4ed8b806ffe311114c7b1d7179734f7a18915b700a8f64ade026081

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp312-cp312-win32.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 18ba671d55b5d69af5d80539a8fd142188c19b39221b0234c7e5e869ef58aff3
MD5 165fe061450d12a8d319473852758fa1
BLAKE2b-256 6444a176f0efd75bb561cbedfa414d9ff00ea74f930a60a429f3e1e90d88ab6e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66bf6897707a56015af5e7371bee2af4bc1b039b7c21ebcb1899ff2e82e0ca9e
MD5 db01232a4aa5ba3259199c283db1a8b5
BLAKE2b-256 2bacef58bb9e4bfdb366bc085bca9ee71bfb6a55bd921eadddd3214d2d2ec020

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 155aa6f1d6c1e8da2c293431284c45e21f2ff0857a8aa16ed587d0abd4a200f2
MD5 d963c501163510e92141dc8af177e892
BLAKE2b-256 3a3eadb80f7b682b51afab15eff36b6c72f81ac59c2f4fbdd86125379ca8f749

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed7d2005d2e1739d416d0a6617c7d7d452d908e28b735119bc17d6365b6d42ad
MD5 84053e0b896502d2f27aefe8d67dc190
BLAKE2b-256 f49f3b36f53fb7497b0b7e7e5b77ff3cf1c4284f4014c563554a48612171ce04

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edce58d407bf8858bebfa395f22c55db55676fc900434ba2281b6d4617feb75d
MD5 c30c2d407eb0afb8d3893127bad30b15
BLAKE2b-256 8d62fa8a4c8b5a564d2e500fa6ddcb6a3ea6194c5a2676597ccf28e4294b9559

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 419.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 873ffbdec5140de05522d8a70c587f3fdf55c3abcfeca9fdc4477c203485efb8
MD5 d30369bbca85ea3b56f41bf6e3fafd89
BLAKE2b-256 f69324b2842265635093aacf99da2960ecd93d9826ddf135444b3c70b6d6da97

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 387.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6b32b7031baf773d78c3a099ec093b425e17a9a7ffd8014154c03d521f1dcbab
MD5 c8d61a414ac603dee6419b7410f2e74b
BLAKE2b-256 ce503235c8788d739f9701f586698f2abbf7c00626ae54c37f002749e540385a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c130bf813cc08ce244401e034886dfb7f42a390a90dd9d42ba7c5a9df44be246
MD5 a87f85ed111e2a06711ff2a5c31d59d4
BLAKE2b-256 78ee0638247bd7ac975887db0d743b5f7a092f1cc12a4daa1255c20577ce2e8c

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 062500902db6621407490ed3e83153750edbf0c3b4c2e06c83c4a0b85bb5e443
MD5 e4feffbe725e9a586ca5e5f23ec6e04e
BLAKE2b-256 019766d4119faee751ece47d0e6b9ff146297e73aeacccb56ce8adf1f79a34f2

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13eba4cb6a6344f4d1947688c22eead0bca5f7163b083c9c99ecfc7f835e0bfd
MD5 529e7727275c3f7ceba236091d4c81bd
BLAKE2b-256 1401e9a2a793c31929fec6ec2d9765a81bdfb5f261155a71ebe3e49f717e8ec0

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 230811ad242cdc84595902a78b26ffb53f7fb0d7955fddab66d4edbf0863326d
MD5 c16755a1f37c3828e8d4e6d6d75a6a60
BLAKE2b-256 48a4f08ace5111fcfee61ea60d7b6e12265e16f6671b35478b4d55b3977b6778

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 419.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 89ca0702279065b3b79ecf66558bdd4aa65db2953bf08fa4a174df99ac5c322c
MD5 035a7a576654838bae17f109821ca5cc
BLAKE2b-256 37ee9e2a4f8f94e73fd125985cb33a98fe21c8af66a000e039f0f811903edead

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 579729b64781dcaecd9a59acfcee13004d412d7563bba46c971a9919c2477ca5
MD5 c3fdc3548d5cc62a68fc7135452d7b3a
BLAKE2b-256 fffbd678673ca578207d881f917400b14f8f0a8de00c816f17a5da4001aa51ae

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c3ebb7bbcd9ec403c8143dae63be9fc6de7500e0c48b9785a772a984eac78ff
MD5 6b2a70fe04ae683e1921386625e65d3e
BLAKE2b-256 3165459145034ec879c0eb05f7d8347e01abb848742dfa164ac4f3b5b9f4fa7d

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58c5c74a2086ae9c6db5609d66ce8d34538beb2ce97d74e17f7995e2066acd8b
MD5 1da8daebafb4e538708f178a0e862228
BLAKE2b-256 9134f1b6ba11c3fb28444f4aa2c05c2cdcb0b77ec792a4e9fb298a0cdee3d751

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dcfc0cfe21a71be18fa7e5167302febd0db357b8ff0140647b6438848992798c
MD5 2626d4654734ea9c7f9c2d24316b289f
BLAKE2b-256 a8c13b18d3b5f49f73d0c346f16fa22d7684f20962b1295375b7482775f0e56a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48c128df10325a447d04f58a4fa3d03c15d30a533d8f1102f8877a266fafb87d
MD5 a1530f373339dd45fc42f5da93b502b6
BLAKE2b-256 d25d92210ef448ac68f6d051b5838a2043de68ed63497fbb169d94f5f40ad8ee

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 419.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fedc5efe0e54c6e03949802ed26dd3c6becf53ba2a13aadcea91a4eef0e7839f
MD5 db17a36b3fd7c13cc239eafb53fc081a
BLAKE2b-256 14cee3ed828484beff3c9e104724d592f2b829ec8ddd137591dff0e8c562ac80

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 387.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 46554587bb94c74051ce3514f4a80dc7c8ba9bd8deed9334f7c03e35dc77e53c
MD5 8fd1d04caa7f340f5a98d96bf10ba1be
BLAKE2b-256 c835302a144949dde8851936225576ff64df1c00dafbde25189ac4f56638a8b5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8cfab755037d5c2b35fa3aee79e8d66a6f9b6da0545fa449820116953de91aa
MD5 ac04f716ae225351b89b9d3215e8ffdf
BLAKE2b-256 7524b54555e8948d82a9676eb1fa2a99ca3c47234ea672b56e78e7f23038941a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 87ffa7ce3558e5eb57b813551bfb05b970472bc573c810a8a32180d7f709e4ad
MD5 d0cadcea229031232b712d4d3ad3888a
BLAKE2b-256 d37e00adb222ad067ca9157dab9ac5c3b005515356a6bd1bf99c6f3fb999d966

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57733a31653c7f30515c65131e2956e9ee96bb8629373d891f76c932fbbe795a
MD5 b1c659526d38eec322039e7aaa1ec4ad
BLAKE2b-256 80f96ec53210dd4e3d44f4ba77f95b7cfa5c6ac5cf7d7c3fce35fe1aa10a5f74

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df722508652c9f8e7ed224474106aa39dd9279370761265cbf1bc58a8ffab6c4
MD5 eab1bdd8f920142b735ef0b3c4f3afef
BLAKE2b-256 55f734a0801988d1565294d56a1f98d183a7df66356987c1d335a5f5f4cda65a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 419.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 04ae0f56d7d4696a076bfc8e8d30485211054a765c48772a225d712d568b88bf
MD5 4ddc1e1f3daa91fd28403a36c1c59c2a
BLAKE2b-256 7d9a98482b84452a051a0b77e56c3e8ddb2bbdc0005433fdedf3c84a6e3872b7

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 89be6b27c5453206d7d12b9c5fb8084a0f7ebb9e73d2c886ca10a00619edc12d
MD5 cbdf29eda2308ad39cb337dd4005df69
BLAKE2b-256 f852231dc4656d51acaca38b0dd88c35dfb417d01896433f674bfb4d8adf8d40

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c9192837ef9f2b9d7bcd39624042701c5c8c62cb8f772a4e7b00cfbda9ba45f
MD5 0c78c7631668ce130f34155b2da2cd97
BLAKE2b-256 6a9c3f08068783645b001b767f5e56d5745da66e75f8d207c126e539be3cb5a7

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 10719ae2e2610cac94344c61416c5d520f5f9446b3ce38c9207a4b29cc9c94c1
MD5 bcc3f119c238de735cb711cdc6bda255
BLAKE2b-256 cb06cb8aad0c4458c74dd75ace9c08bda3291fae5071709958fbd639c1bbd898

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24a25f7022bc57f14dd6a4e0fff108fe7effd3a7902c4e95c44d10c97a6a2e8c
MD5 565662ea3571f2c569689413d00f325e
BLAKE2b-256 e96d8b98c3f21865a371fc80b6b7ed191f26932edf759643a61954025fb890f2

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d072e70f157210ca11cf6e803b698ce4d5ee0604a67de7080793bb3fb56e1b06
MD5 5311686d31cb2a0172f3c7d0eb5d9f4b
BLAKE2b-256 50b3b9ffb139ece15a959032304accedb7a87a0782622a0a9ce63de477e6a12c

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 420.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 23ad27c2a52cc813cb79de3430c26a0fabd931b285de4a6057fb4392230d3112
MD5 ecdc996bbaa2f33451c2bf96acf19d4e
BLAKE2b-256 2e8a51981d8eba952704856258399c4df3cbed404416713558e0831e357f829f

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gseapy-1.1.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 387.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for gseapy-1.1.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2a986d75110ddd8156eb20a4a71d1f299ffede0f9ba700901458186d3d4902ed
MD5 d19da389adbf88056805f8dd96e7e739
BLAKE2b-256 fd3e976c54e9c24aac2b68fcbeafd0bb57f26ad9da88b4a05096d8bc31d12475

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2872e37fa151f93c4ea8981f0d4ca35139e538a27b3cebbff14f277706541855
MD5 68448b4716bf6330e821f560be5aff02
BLAKE2b-256 2b7753010d03c8fec2a9367a7aac8d70efd08ca18a0ca704149aaf9187862a88

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 959bb598bc76271c8d4f80ab4472ee2b3a7226773204158f0e11bfe8864d50d5
MD5 f0bd723a481907f89558eb1a7da0815c
BLAKE2b-256 00666b04ec42792199d762c762ea7111f30cd231a9017d232a744715689bcac6

See more details on using hashes here.

File details

Details for the file gseapy-1.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce9cc92838376c151c97f1519d5916449a7fc8e9e2240d709f4a0082fb5c8714
MD5 dde40a8ece1aedde8f4e0e176bdf3a13
BLAKE2b-256 7dcb8340a9a3781f1c0b67fd7b9aaba3b8777ba1eda646317320bb12aade6416

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page