Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEApy: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic https://anaconda.org/bioconda/gseapy/badges/downloads.svg Action Status Documentation Status https://img.shields.io/badge/license-MIT-blue.svg PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets

Tutorial for general usage

Citation

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has 7 sub-commands available: gsea, prerank, ssgsea, gsva, replot enrichr, biomart.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

gsva:

The gsva module performs GSVA method by Hänzelmann et al. The input is same to ssgsea.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

biomart:

The biomart module helps you convert gene ids using BioMart API.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

docs/Preank.py.vs.broad.jpg

See more output here: Example

Installation

Install gseapy package from bioconda or pip.
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy
If pip install failed, use
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 3.7+

Mandatory

  • build
    • Rust: For gseapy > 0.11.0, Rust compiler is needed

    • setuptools-rust

  • run
    • Numpy >= 1.13.0

    • Scipy

    • Pandas

    • Matplotlib

    • Requests

Run GSEApy

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Dev

# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py test

Bug Report

If you would like to report any bugs when use gseapy, don’t hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions

  2. Visit the document site at Examples

  3. The GSEApy discussion channel: Q&A

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-1.1.9.tar.gz (112.5 kB view details)

Uploaded Source

Built Distributions

gseapy-1.1.9-cp313-cp313-win_amd64.whl (425.3 kB view details)

Uploaded CPython 3.13 Windows x86-64

gseapy-1.1.9-cp313-cp313-win32.whl (391.6 kB view details)

Uploaded CPython 3.13 Windows x86

gseapy-1.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (631.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (580.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (596.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp313-cp313-macosx_11_0_arm64.whl (529.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

gseapy-1.1.9-cp312-cp312-win_amd64.whl (425.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

gseapy-1.1.9-cp312-cp312-win32.whl (392.2 kB view details)

Uploaded CPython 3.12 Windows x86

gseapy-1.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (632.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (581.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (597.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl (530.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gseapy-1.1.9-cp311-cp311-win_amd64.whl (425.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

gseapy-1.1.9-cp311-cp311-win32.whl (392.6 kB view details)

Uploaded CPython 3.11 Windows x86

gseapy-1.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (632.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (582.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (597.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl (535.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gseapy-1.1.9-cp310-cp310-win_amd64.whl (425.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

gseapy-1.1.9-cp310-cp310-win32.whl (392.6 kB view details)

Uploaded CPython 3.10 Windows x86

gseapy-1.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (632.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (582.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (597.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl (535.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gseapy-1.1.9-cp39-cp39-win_amd64.whl (425.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

gseapy-1.1.9-cp39-cp39-win32.whl (392.5 kB view details)

Uploaded CPython 3.9 Windows x86

gseapy-1.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (633.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (583.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (598.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl (535.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gseapy-1.1.9-cp38-cp38-win_amd64.whl (425.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

gseapy-1.1.9-cp38-cp38-win32.whl (392.6 kB view details)

Uploaded CPython 3.8 Windows x86

gseapy-1.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (632.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

gseapy-1.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (582.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

gseapy-1.1.9-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (598.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gseapy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl (536.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gseapy-1.1.9-cp37-cp37m-win_amd64.whl (424.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

gseapy-1.1.9-cp37-cp37m-win32.whl (392.8 kB view details)

Uploaded CPython 3.7m Windows x86

File details

Details for the file gseapy-1.1.9.tar.gz.

File metadata

  • Download URL: gseapy-1.1.9.tar.gz
  • Upload date:
  • Size: 112.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9.tar.gz
Algorithm Hash digest
SHA256 987670922885c6d38caa72aa9a104680a814eff1073e2a345b2b8c7190791d62
MD5 dea410143fa134c302b8bbada8631546
BLAKE2b-256 07801466b6a41fd07c749db6fc1137b75c9edd5a930ddce3cc7368a6febc99e3

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 425.3 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6314ee3de4aad4cade3a184a9ac2860a3c15ab2fddb9d092b941fcacf8e70523
MD5 33c7736af1b796b58a9ae55acfd678dc
BLAKE2b-256 cd72e533e92aa23ddab7330fb2f9ac530afb81e1f383f9a7e77ffcdd58930e5c

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp313-cp313-win32.whl
  • Upload date:
  • Size: 391.6 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 4002ad67ede0fafbae2b310add1fe6f6b3f5be16d2794947c4eb6a24a2018293
MD5 5797d0ed8bdecd4a1ff2622535920ff6
BLAKE2b-256 b18196e51b2d41c7d5018a7f49cd4d7ba61ed9d4800508a1faa5fb02f16f8c99

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 20aa82f9067a8df762b260b0b35754ec2d19162550a3b0b64cdbc36489bab645
MD5 03769f468f62c09cc3b17b5aa5bc5d17
BLAKE2b-256 28ac4a5f61c37f697a05b6ff72a650ace2e9d58f5bdc8c04e88aa1885b8a8a5b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e59b16f28acea655c1e78aad50fe6dc9b0e93340b4dac6a26de3961f1b51a080
MD5 7c02ff40466d6d34b2a588e948242888
BLAKE2b-256 9541352cf652d7367436310ab947a6d0dd4545c5bd299a424c79285d7b33d724

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 261901e555e0c5dbad8473fecab6af8028836592925a99dbee9be63e820202c0
MD5 f55d2ed0ff7c7c1280de1ba135be2798
BLAKE2b-256 9183cf5ea597b683c96749a55c64a2288ce556fb9668ad9b4962292e32dd05c1

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a2d227ab9fe355367bfb180cc3c664de81be4a46d10ac3d0f14030ae04d5636
MD5 9a02206c5a30c988af6c76709555d00f
BLAKE2b-256 2fb44e4a7b5a4b0bc3d3848d36111e9be54d47153e608daa5977f3e6cb09871e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 425.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 75d24a4e7fc2c907d906a9286ab02f0c5ac8429a819f159358d3fececb819bb1
MD5 48839af31a71ec49058516191dfde6df
BLAKE2b-256 9c635012c8c8198ffd1a72de1faff7c06e188bc50652154ce6a06aa7a9e2e660

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 392.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 860c5995d65f9f957be2ea2f53d67231081bc7f692ac87504b21f8bea95c16a3
MD5 0ffd6cf061b8272967570014f2e3f229
BLAKE2b-256 8308899dd56a6f4e1e5c1558eb28c012c4e1961c36f19a0fbd6300a6450c91d9

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8df8e9d188e140b2e4a8a71381dbbd844a0585bdaeacc53f43d35362e53de4d3
MD5 527d76e09e83e39806f2badd4fd198e8
BLAKE2b-256 863ff6ed0415963580775c7b8046e6b0972fbb99b49e1fe3baf01e651ce11db9

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a7f88fb02fc6be1fa62a64ff6169035d4eadfa2440b896eaa6cba6f1948504e
MD5 1d2124e73fcf0f561a0d5e4245640088
BLAKE2b-256 34a2c09672345c14a029e5007ac7aa6f4aadb1d7333db8435f99d8c52b96b6a5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b2e99c73f4ba2412ce1f4df387e78fea468fcb85486237be9eaf671c5ff74725
MD5 b00e47a3b8ea809d657b12456f122533
BLAKE2b-256 fcc0fe81f6f7483a8ad72f84e609e3bfe4288c3a4dc00911a20e1b27ac290171

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dcc0b488114c6adda9ee0c68a42a96b5661117f641ba3c3efb6f14f79a45499
MD5 281b3d6a330aaad6dd69a2343395373b
BLAKE2b-256 b111fb497de0cd8f6f766ddc0a060f069822de87191a975fbc92439413fbaf77

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 425.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8c69d61848918bcc3bee6384b7a46a782e3a5bafd1f0b8607be4043cfb10ea60
MD5 897987d2ff94f68cd36e2766734dbf73
BLAKE2b-256 74c22a5572b4038e98f2977715673bcbbfd6842c342b4d4415cd58b24c5bfcaf

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fc7666b1066e23e4eb4496e41455b6466a65d13c4a1a4b60a5dde9380df44535
MD5 86cb7368e3983888d9e2bae16edcb581
BLAKE2b-256 c7eed3df3cd1e05a417dc118cd61f3381c07534337c248de6f3fc8ed09c6ac34

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cc38026aa92f9e1b69731cc30ee12d9eba16f1e3ac07636d586f3e38f2d3bda5
MD5 5d8d35c7554531dbb906760b53c92ed7
BLAKE2b-256 a44524ae05797e621d94a8c57bdc0470f7f5d64c9d30b328befd011369214c7e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1068cc52de9a379df06ce207d1c95345fb1b919071bfbe933d5d9703257358db
MD5 65ed4aca68cb28a358c543f3876e42d6
BLAKE2b-256 066e2a54a038f111cf67d2faddcabcd11a5ef3be7451f13b6b569aaf4437fb8d

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c1ea94f9266396fa4b042175b20d9c82fe6bb3fca5e741284870fe32c219c502
MD5 05a7c45c7d70a7361bfc509139697680
BLAKE2b-256 db448b1d3e1d74e90aa137bcc8c25807c26e5820fe014a570941f4af8673000f

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dad5c1af577b3ed6d4ff2c4de7d133fb0e4c03d7e19b738bd73f695a132f88c0
MD5 3bd5da2ddc05fb7aa5ea60fb4107c6c8
BLAKE2b-256 9eb221f09caa13605f3736994e3e2cc2bb8b5d66c39efbd46f508d9bc70feea8

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 425.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f41f570dcf282a5197960344f14de41500fb656d8f807258cfaf45b64bbe95ed
MD5 02c60b8414eea409e41fc4d3af550ff6
BLAKE2b-256 b219a733149e3906dcc4864aa0f1480ecdc32c172bd5d5bd09b222567d70c38c

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5ba05327ab2aec8eb9de75258f33e4324e21ed79fb0a76c62a069b26c02ddb38
MD5 e0a06c3b775ff9130edf3685fc2f9e8c
BLAKE2b-256 0bf5134a175afe9ec6af3c4c959a19de738a849f30454540d55e5de8aa4992b1

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 809eaa16416bd2a2ddffbc47fb4657e932f78e7ceb9df34b25570ec8dda1991f
MD5 8c95d7684a864280ffeae10377ccc384
BLAKE2b-256 8e5240e087ff3cb15f56c9a908d51440378c34db9a212aa8b32901d62b93aeb3

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 181edec71c8652a99ad36b173447125ddaf1ad2bc1b6d27a261bcaafd107a35c
MD5 acd7d6f9fc33e3887fcd4aab48dbf06a
BLAKE2b-256 8eb7f999b64daefa14797db568e5446abf14baaa728f0560007d6e1a133daba6

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3410a910708963314fd3406d33b17cbe201ba8d4610de2813719f9e547f4a569
MD5 7fc120eb2e983b418d42206acca30029
BLAKE2b-256 e8bc21a9af3bbdee2868d7d02661da61db93bfa40458e94cd7532776aa911573

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77f711aacb0ecf15c11b3befd466c6526319dc18d20a6e5ecb66407f49312e64
MD5 3f8ac1d6ea2a93948ca959452dfcae84
BLAKE2b-256 0bdaf9c22ad6cceba92ae55507f6b095574c5bfaec6a3d5f4cd9ec2be2ea3b14

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 425.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 986519e0df153890be95174c9ea67927780918a86f9de2f8b405eb08a526c08a
MD5 e0523f9976556e48d3786e0ae3a444d0
BLAKE2b-256 e9c08e74eaa1d675ab4df1d3671176b17854fe0793f00aa3aaf8f27af09b1057

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 392.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a4f0b4a05537f49d6bbdd0961293adc444b220307abe2aad446ec2bef6898f44
MD5 b6f372f6cb5e2081754ce1e26c4854f3
BLAKE2b-256 0320bb57b67bd2b75332fcfc1415af1de7675f59c934de31ca4c794e5c3bd839

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2fdb537508f9a9689f15426dbe003a9be4a633f24edf7d8241cf88c8bd6af0cc
MD5 17b26f67ab39b48117d0cd1cb776546c
BLAKE2b-256 942801528437178cedf217374ae00369e5bdf2db634a3237433d859aedda9d3e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03e689c8b67bfb8e0342eca138def4138be3846956da60c7aa5f8ed3561a1d8f
MD5 eaf7a720056993cb9cbaabdc5c220640
BLAKE2b-256 789b144cf5448d0e0383a73cd6df16b5dba8612744a4317f7fef657e8b1ee3b3

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 42999431c77952e108450dabb8d2894b62850d54e0c316159e09a7e31e35c3b4
MD5 608af53f33b9f73ef096bc9df0d29f37
BLAKE2b-256 3eb4c6886fc5329eb07e8ecf2942a4b1e2c24c13ad7e31b55f9bda1d55801aaa

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81e253c912ba6cecf38259808f6afea5dccc8eea0ab162baf789521e51f2da0f
MD5 0ab3b56aab5f88a3687ecc9df81e9d8d
BLAKE2b-256 0bf0c8911d83747562b7a29f54ded7a5bdda42439647596eefaab480d65ddbc2

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 425.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1c494f9e66e32604fe510aefe000a26cc54139f06385b325ab41eb961fd62060
MD5 78db24310aae687c8f2b6a2e90047aa7
BLAKE2b-256 5519082849a8c0681b82e59655c58801fc4d279016905b33e2ef949a754bd166

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 84864bb98ea59e31764c19cdf352f50a198d6ca89a2d11b902ed95653860deac
MD5 3176cb4cc4b58bf3dd9c3d3b0f450dfd
BLAKE2b-256 cc4b5e39d2b043794ff62ac60eb53390bf916d29ff28d18b2fcc672661d11bc5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d796650bb397a8cba358587371b289a6ac89f16788e8c2539b312c6cf5e3f3d5
MD5 d7ca47128b18e8100e0fb0469962f0c3
BLAKE2b-256 ee78843a28fb00ed3e447b3dc1633e90e5b4c0b9e2a89b993a4a538b57246019

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a75ee029d087ead0a5b6119b7d54921aa92162eceb2ea09e0e9bae005b9ae7c8
MD5 8a2b5b638f18f72550ea71aa6a7490fe
BLAKE2b-256 62107c3d8412ccf70224aa884f1080e3df71e1578306d65e528f3b56074bc2d4

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ef54f3a784badc234aad604257404f71e9d3e706fa5ecaba6231d6578c863b9a
MD5 b5a03678542c935e9958eb35f76ed607
BLAKE2b-256 08bb3520f4295c5b60894df8351b01da363519bc65e7f0872c963204d21786c0

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 996bb37e2c31763c5ca48204f57cc216c5d0df08c55dc4b32b9d1ef429f6c68f
MD5 c8c3ae95331bf1fd4f548f648e6ceb2e
BLAKE2b-256 d6a4181882d93072a73395e3f6e0e9eeb2335bb8afa22c3cf45b5169a5a3821e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 424.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5f28e150b0b0a8595d7e76b0810c6af97b92d5c08b7c94a2acf554cd3638fa90
MD5 b2e525651a0ed1b3bdc443af7e59ce0c
BLAKE2b-256 5bdde7df5610c28a8b0aadba69426cfcc40af0d391c3e1f6c3bd4694ecdf79b4

See more details on using hashes here.

File details

Details for the file gseapy-1.1.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gseapy-1.1.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 392.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for gseapy-1.1.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 83d1f8f251485d296a45d309078921d964e56e7fd76bb3dbc5975b2a09d371f3
MD5 90f146c6ba03b00f2dd4110de9595aa8
BLAKE2b-256 dbc553b4b24bc42dd92cca8b5935deb0d28af37444e6bafe7aa4f3e13781c2a2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page