Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEApy: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic https://anaconda.org/bioconda/gseapy/badges/downloads.svg Action Status Documentation Status https://img.shields.io/badge/license-MIT-blue.svg PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets

Tutorial for general usage

Citation

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has 7 sub-commands available: gsea, prerank, ssgsea, gsva, replot enrichr, biomart.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

gsva:

The gsva module performs GSVA method by Hänzelmann et al. The input is same to ssgsea.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

biomart:

The biomart module helps you convert gene ids using BioMart API.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

docs/Preank.py.vs.broad.jpg

See more output here: Example

Installation

Install gseapy package from bioconda or pip.
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy
If pip install failed, use
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 3.7+

Mandatory

  • build
    • Rust: For gseapy > 0.11.0, Rust compiler is needed

    • setuptools-rust

  • run
    • Numpy >= 1.13.0

    • Scipy

    • Pandas

    • Matplotlib

    • Requests

Run GSEApy

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Dev

# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py test

Bug Report

If you would like to report any bugs when use gseapy, don’t hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions

  2. Visit the document site at Examples

  3. The GSEApy discussion channel: Q&A

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-1.1.11.tar.gz (116.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

gseapy-1.1.11-cp314-cp314t-win_amd64.whl (434.9 kB view details)

Uploaded CPython 3.14tWindows x86-64

gseapy-1.1.11-cp314-cp314t-win32.whl (396.9 kB view details)

Uploaded CPython 3.14tWindows x86

gseapy-1.1.11-cp314-cp314t-manylinux_2_28_aarch64.whl (585.4 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.2 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp314-cp314t-macosx_11_0_arm64.whl (533.4 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

gseapy-1.1.11-cp314-cp314-win_amd64.whl (435.6 kB view details)

Uploaded CPython 3.14Windows x86-64

gseapy-1.1.11-cp314-cp314-win32.whl (398.4 kB view details)

Uploaded CPython 3.14Windows x86

gseapy-1.1.11-cp314-cp314-manylinux_2_28_aarch64.whl (585.3 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.3 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp314-cp314-macosx_11_0_arm64.whl (534.1 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

gseapy-1.1.11-cp313-cp313-win_amd64.whl (423.0 kB view details)

Uploaded CPython 3.13Windows x86-64

gseapy-1.1.11-cp313-cp313-win32.whl (391.0 kB view details)

Uploaded CPython 3.13Windows x86

gseapy-1.1.11-cp313-cp313-manylinux_2_28_aarch64.whl (585.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (604.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl (533.8 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

gseapy-1.1.11-cp312-cp312-win_amd64.whl (423.2 kB view details)

Uploaded CPython 3.12Windows x86-64

gseapy-1.1.11-cp312-cp312-win32.whl (391.3 kB view details)

Uploaded CPython 3.12Windows x86

gseapy-1.1.11-cp312-cp312-manylinux_2_28_aarch64.whl (585.4 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl (533.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

gseapy-1.1.11-cp311-cp311-win_amd64.whl (423.0 kB view details)

Uploaded CPython 3.11Windows x86-64

gseapy-1.1.11-cp311-cp311-win32.whl (392.3 kB view details)

Uploaded CPython 3.11Windows x86

gseapy-1.1.11-cp311-cp311-manylinux_2_28_aarch64.whl (585.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl (538.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

gseapy-1.1.11-cp310-cp310-win_amd64.whl (423.0 kB view details)

Uploaded CPython 3.10Windows x86-64

gseapy-1.1.11-cp310-cp310-win32.whl (392.6 kB view details)

Uploaded CPython 3.10Windows x86

gseapy-1.1.11-cp310-cp310-manylinux_2_28_aarch64.whl (585.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl (539.1 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gseapy-1.1.11-cp39-cp39-win_amd64.whl (423.1 kB view details)

Uploaded CPython 3.9Windows x86-64

gseapy-1.1.11-cp39-cp39-win32.whl (392.7 kB view details)

Uploaded CPython 3.9Windows x86

gseapy-1.1.11-cp39-cp39-manylinux_2_28_aarch64.whl (586.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (606.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl (539.6 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gseapy-1.1.11-cp38-cp38-win_amd64.whl (422.8 kB view details)

Uploaded CPython 3.8Windows x86-64

gseapy-1.1.11-cp38-cp38-win32.whl (392.6 kB view details)

Uploaded CPython 3.8Windows x86

gseapy-1.1.11-cp38-cp38-manylinux_2_28_aarch64.whl (586.2 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

gseapy-1.1.11-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (605.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

gseapy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl (539.6 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file gseapy-1.1.11.tar.gz.

File metadata

  • Download URL: gseapy-1.1.11.tar.gz
  • Upload date:
  • Size: 116.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11.tar.gz
Algorithm Hash digest
SHA256 d36a164ee466f7ea6deadfe82ea041f3328ee937ff4c9de862b3e6e2825df0dd
MD5 12ab822735e6f2ee50e4bc60a5c53405
BLAKE2b-256 1c787c0fbec6019db95dadb560049cc503e950438488b3b0822a2270e1f62d2a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 434.9 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 eecbb67c1d4f1dd72cddffbe4b842fb7a616dc16384d637b69a663ff3f75f005
MD5 cd0e9b4a8ba998f3d0460cda9dabce83
BLAKE2b-256 84e034c2bfd907d1bbc49839b35683aaf342b53b344e898254f67c79eb68bd7d

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314t-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 396.9 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 96bf8219d2222e7c4dead2e17ba731e20d72ee5759d7b92a240cac7bb654e1c3
MD5 f768c9d6c45453c61f78c496359b8673
BLAKE2b-256 49ed52b770a7464a12afc0f87ae026d1598ea8282478f6f268b25eeb35502faa

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d5f405a123e4688baa8bb1dda2437774cbe62480c6b559e8d239443c7e1c7ce7
MD5 c6b1e79ed2eb6af6840b9110c90ebac3
BLAKE2b-256 cd4171e575bbdfd1c2613c140d9e705f59d858ef9d556487ea2479d6a57d32e6

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5efc97e1eb7c003265d9114a71ec6a6437b76ad5777ec6c23029342614792dd6
MD5 fe71dd4c3727824ea38ac8cc2d2bfc68
BLAKE2b-256 6dd6f3c934bd83cbf3b0bbb8e2d82f7c88408ceea89967059c6160402b3cba8a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34cbe710eef2a8c8a1361033ded4b3d9915c4e5b434fe264d455fcd426b3b212
MD5 73aba31c53247caa43b21501593ec147
BLAKE2b-256 53da746b523443ec3a56d0a9c05c4c65c67fd2d65eb187294f405a2c3ba111bf

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 435.6 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 f4b21ff8521b77e481c0bdd3a87ed01f317c8e5f2de44aa55497615a55935191
MD5 d61904425cd01fd3d3d91be509a9845b
BLAKE2b-256 5ab1cd330c9c91d1b258e4316a49838b449748d5b5049bbb148594ac89805577

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp314-cp314-win32.whl
  • Upload date:
  • Size: 398.4 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 c3f2251c9c6be579e8cd831a7a58fef7e9538464d35870d8c0c988bc84ff3b28
MD5 38817fe7a5b035285fcd84f989664361
BLAKE2b-256 25d4fc0a0f16f92a47d8853ab8363a839b66446fc62c8961e5f44de3d7381eea

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e33fbd03013078c596a83a45688946542417342775bdc043790451fb3b2d3571
MD5 a2c4a141b0709db3866e38c112e079c6
BLAKE2b-256 808b7e9034aabc9fb745c7e47ea0b5999d4ff06bc8cddae9375b47d0053b3358

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ba564f9ce898f5bf63d9ae313abb248df117dd51692b00abed94dc120673701c
MD5 cd9a614227d8c17fe0bef9a175008c48
BLAKE2b-256 f64f159e9712e3c7f69b13637b7fb79f695db06560e23a606428f0bc83584c46

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b20ef72db20c4710d09dd030c0fa13d741e4139e3020fb589a22b4f4bbc02fa
MD5 6a0474ced88a32861500bb0d78441a38
BLAKE2b-256 9e823e943090b92955222a69f2098b3492b8a84950589fe8ef24f02a9225c027

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 423.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ba032520ed25f17f234f055b0bee73735790af97dd53197c107a9584526737d2
MD5 2c1a39c67c98288c502d028645b49377
BLAKE2b-256 e9898bdf5926d19d212806b0bfe7238526501933ac7bd9ad78bd3718a7f63c65

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp313-cp313-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp313-cp313-win32.whl
  • Upload date:
  • Size: 391.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 77f465375da385b2e9aaa511b6f677a19f0de620be7076149d036660dadffed2
MD5 026d399bb55d1c2e66123f9890235d5e
BLAKE2b-256 074b519cc29d0677858c6ba6189a4bcbb780bd20c98cff53d3d749fd2b2cadbf

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a95437a1438fd9827eeed0c6bd49658f3e0b365044fc2c704dded87b2f3980f6
MD5 38bf7a9b41cb4ffda2aab2230ea70408
BLAKE2b-256 e81cd25f836c6fd6d19e6b4d647bb9326da69db317d748fee7027dae04026164

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 910c7ddd223b6b616c1350a89b3109c59b85cd91875a6f6206aa9f32801a911b
MD5 9815eb54ed94ad02ed2b51e1c3a8987a
BLAKE2b-256 f00f10b9797976cb625a4f8d695e0d0ad7571e83125b2f0a2b437995869f785e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a21c05fdee3c72c861ed4d6ba0d4a58175128be955db6ec86947937122a9c08
MD5 aaf82faf9495d9901b5b857ce5c64e1d
BLAKE2b-256 fd55803ff56e7bc6ae690db901b1e60f0f78808cdaaf6291b01930c791f3b652

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 423.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5645f8f8c88a9218225a7c207d6d1de9eed9955f108ad2a06c46f42885ba4fa8
MD5 53cfecccfc3b5124ad75cbbbe4ea8dc3
BLAKE2b-256 9cab6374ddf4cd4637b0cab1e9cd2dd8b1bf007bdf1e9fe1bf8bff2d83482a9b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp312-cp312-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp312-cp312-win32.whl
  • Upload date:
  • Size: 391.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 18ba31a03b043b7a78397c0589f04d0f4d7a3ff76af09e219f0240085708c4c6
MD5 b4347b0add9726831ab345f936ce4161
BLAKE2b-256 faa62b86532b665a3dd50d5bf5390e3b751487a6b6f64eddff1c21ea9d302fef

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6c64e60a8f61047c7d4053b791c7dea1c375bd28b955f0c50ae3cd607013c47f
MD5 d06e28816a1c08b915a06157ba32f0c8
BLAKE2b-256 2a9f592125b3eabb64ecaf3275e4f0cff7dc59d438f8ffde360d686802787bc5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 48453a402feae0412f6330a3c39f95ab02e82693f33bc4a1c6c02c867e7e6d1c
MD5 ac64e1efb7e00c638470dcef770899a9
BLAKE2b-256 0d3ec3c23ff829d6a88c403cda12ed856ff93c7f07c510e3bf5c114a4d2f575e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d22c2ec30dc863b86292a0e967f8c7216ef03028b41f1ece6c59d277a870bdc
MD5 e4768aac21ada9902220988cf3f031b1
BLAKE2b-256 07718034311bc4a7a41414cd188da9b411b4cd0c357574b01d8609d6e9a1d336

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 423.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 864aa278c599753dca3505ec6619e67eb09f8985236527d4c758301745dc3b35
MD5 411a2cbde3662995250d48811fe1becd
BLAKE2b-256 6678a77a8ebdedf27ad10dbee9e92e02235c470e290b1df40c4414141cf3fe98

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp311-cp311-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp311-cp311-win32.whl
  • Upload date:
  • Size: 392.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e7e3a79519db84523abd5f1f407f6842d001eb07d68a74d62d83f845666dca35
MD5 f35272f04cfbfde98ddc80fc57a77e11
BLAKE2b-256 375113315a25a615a20bafde6566c9b1bed9d52039de2c8cee4c19545dc7b1c5

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 de200cd74db190fadf32b874614521f639a5d531410f8d97c88ff60ac288c5f0
MD5 21d5428c8801fb309974166bb92766c9
BLAKE2b-256 70e4e17a2af3ad129d0f9b64e0af0e0a1429fe998bcc86387b2481914af9d762

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 077dd1c7520707a7e472ac0d39faf69dc5ced3c6200a9a2d79f631cb8ca949d1
MD5 a21064f85aca81c573f5221d7ce3c436
BLAKE2b-256 ae5a36826235cdf46aa1a9cdd06aaba6dfcdb2eb3d9c72557891ad16c4f55536

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f39105b320bb17437ac793c3de5e5d2c7008ab03dba1b3fbde0ba37051618ce
MD5 87772ced610e17d6e95d4da4e7d0b45d
BLAKE2b-256 eff3026d0830840a9925bdc799a32b47a332f0ba9fbe46d31b6bbd914d9a5899

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 423.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d6d828cc74addd87481c3bbff192dba5187c662f739dfc934f985569b7e51b77
MD5 0f2d63e645a85b7532b55c25ac411027
BLAKE2b-256 9b1a825471a24b5f8f696c5ce1c6bf5257f2d7bcbaa76a8fd5434ffecfac874b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp310-cp310-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp310-cp310-win32.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 371a1c038938ed657af03ad33254e07678f3027c1001b5cf7047bcd728a6cdcb
MD5 e1616b349ea2b6cd18f5bd43e8aaf77b
BLAKE2b-256 ba590d244384164d06658b595413d777e75bf18b3beaeec748da0b6721d35a33

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 325ec569f4aa328e146983567a50ee8cf5ddd3fa4de57410d614cfc545ec3d98
MD5 09b74830f0d7127d599632af0e93eb1d
BLAKE2b-256 b7c5db8c491030220611eae3a91be2268eff036d2409bc9ef30355ccc101cf95

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d099838af1d116a3fedf3e513a1fe368ea4a49e8ecb78076ac252ac117479c2a
MD5 c13397dac49425957ce3eb98f834547a
BLAKE2b-256 215bd6de0db6694169f39db230ba7a7086e95ef5aee236fe74d9a17df296e15d

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b4ac999e9ad71ce98a4ddd955a33c01ddb788114a4d40fb9de2675999f54e668
MD5 9b8d5de05c2268a5e2e55dde2a0c4006
BLAKE2b-256 e5ca2c0c7b6f9c20edf46de1c2bb17e2addf15af162c5b391bc6828685f6cf7b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 423.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2f958c8a10363d969d89fc514443a3516fa1a91f60a8b861f245d6554e30f39f
MD5 268874cd615de838d5a881d515f53493
BLAKE2b-256 cb6c4b2cae4938e7da688e3f232ef3950f6135d74abc9e6037f05e1907519034

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 392.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 60d2f62de382e4f5d4e4e6ade492891838c2dfd0df38059a123304961625ec9c
MD5 57ac022d24367591445b2582cfcb2a33
BLAKE2b-256 eecdc7107e1993dfa4a6373ed830a0e21bfae5002aa428e672be6e01746b16e7

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0e307f7d3249826d1b3817446f4622308593b59152c103a5401249aa1a413c25
MD5 86c70d167c718beaf0faa6a859da3a05
BLAKE2b-256 e9020119e0aeb9429e520eb0457f4e0b84c98eb267e656e0af7cfca3a71fcc86

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 721b117db268f1771b79f0f4fdf1ede89d815a3563bd4309c782e460e539d5b4
MD5 20a71aa5ed7d5e148e38983c1a58e475
BLAKE2b-256 a9657ad69246d4222197dfbcf2bc054634a6543441e5e72d18dd3c6b10fda514

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d8acfb4629edbd301f627cc517d3982cc65899238760d42a1106f1baafeeb33
MD5 68147f3f13971dab5594ff126d87b3ef
BLAKE2b-256 05d006da882e6c1ebd8b26f4e1ab3086b40673331161062ddde0a20b16a14d8e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 422.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d912331890286aa62811015b3b390f8050eb79e53a33ba56eb3aa03538c0ca56
MD5 14c61ab9260c075344d88bcb876ca316
BLAKE2b-256 72d084ac20e0433c24f6c0128e50a5c184ba9a75966aa29c7159ee1335d7f4f3

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: gseapy-1.1.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 392.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for gseapy-1.1.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a84419f603297f417e6fd1c562eafc488df62dbe2db529e52dbaaa4db518620e
MD5 1b63bdcaaa3d0a618579c14e722ed4f0
BLAKE2b-256 546883cf1224c782916329d35d06d3e95f00d8eed45c36b59b45554fb269b68f

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 24c15c21f4c2feec3905b3213dab7bdf346cb6c02fee79a373129e7c2a28e12b
MD5 57224a8a4835c8c0322ec4fd21d91209
BLAKE2b-256 120504a9459b51ec54aa46887c72d1e915cccf43261252cd867ea24a83c92814

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 40017e7e653db37c213a898628afbbf2311a06412c4d43264d6a56f01a45dcb9
MD5 5e78b2e6f80b2940301618bda14bb781
BLAKE2b-256 da4d6721368a3d83966961b4a1e0c700ca7ff1a5cac1f31946e578c4e7de5cd6

See more details on using hashes here.

File details

Details for the file gseapy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a09484cbba49fbcab8b19497faa1f2e442a37bbaf7616918570a6e38b3e5480f
MD5 145416b01864a7a685b177057c27b2d4
BLAKE2b-256 8811091cacde985391b3a2017045d05318d2d861c3902b37ff846a023eaaf8ad

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page