Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEApy: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic https://anaconda.org/bioconda/gseapy/badges/downloads.svg Action Status Documentation Status https://img.shields.io/badge/license-MIT-blue.svg PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets

Tutorial for general usage

Citation

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has six sub-commands available: gsea, prerank, ssgsea, replot enrichr, biomart.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

biomart:

The biomart module helps you convert gene ids using BioMart API.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

docs/Preank.py.vs.broad.jpg

See more output here: Example

Installation

Install gseapy package from bioconda or pypi.
# if you have conda
$ conda install -c conda-forge -c bioconda gseapy

# or use pip to install the latest release
$ pip install gseapy
You may instead want to use the development version from Github, by running
# you need to install rust first to compile the code
# rust: https://www.rust-lang.org/tools/install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 3.7+

Mandatory

  • Rust: For gseapy > 0.11.0, Rust compiler is needed

  • setuptools-rust

  • Numpy >= 1.13.0

  • Scipy

  • Pandas

  • Matplotlib

  • Requests

Run GSEApy

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')


# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# using prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# using ssGSEA
gseapy.ssgsea(data=ssGSEA_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Bug Report

If you would like to report any bugs when use gseapy, don’t hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions

  2. Visit the document site at Examples

  3. The GSEApy discussion channel: Q&A

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-1.0.4.tar.gz (91.2 kB view details)

Uploaded Source

Built Distributions

gseapy-1.0.4-cp311-cp311-win_amd64.whl (345.6 kB view details)

Uploaded CPython 3.11Windows x86-64

gseapy-1.0.4-cp311-cp311-win32.whl (322.2 kB view details)

Uploaded CPython 3.11Windows x86

gseapy-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

gseapy-1.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

gseapy-1.0.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.12+ i686manylinux: glibc 2.17+ i686

gseapy-1.0.4-cp311-cp311-macosx_11_0_arm64.whl (447.5 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

gseapy-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl (473.7 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

gseapy-1.0.4-cp311-cp311-macosx_10_9_universal2.whl (840.8 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

gseapy-1.0.4-cp310-cp310-win_amd64.whl (345.6 kB view details)

Uploaded CPython 3.10Windows x86-64

gseapy-1.0.4-cp310-cp310-win32.whl (322.2 kB view details)

Uploaded CPython 3.10Windows x86

gseapy-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gseapy-1.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

gseapy-1.0.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ i686manylinux: glibc 2.17+ i686

gseapy-1.0.4-cp310-cp310-macosx_11_0_arm64.whl (447.5 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

gseapy-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl (473.7 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

gseapy-1.0.4-cp310-cp310-macosx_10_9_universal2.whl (840.8 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

gseapy-1.0.4-cp39-cp39-win_amd64.whl (345.7 kB view details)

Uploaded CPython 3.9Windows x86-64

gseapy-1.0.4-cp39-cp39-win32.whl (322.4 kB view details)

Uploaded CPython 3.9Windows x86

gseapy-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gseapy-1.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

gseapy-1.0.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686manylinux: glibc 2.17+ i686

gseapy-1.0.4-cp39-cp39-macosx_11_0_arm64.whl (447.9 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

gseapy-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl (473.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

gseapy-1.0.4-cp39-cp39-macosx_10_9_universal2.whl (841.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

gseapy-1.0.4-cp38-cp38-win_amd64.whl (345.2 kB view details)

Uploaded CPython 3.8Windows x86-64

gseapy-1.0.4-cp38-cp38-win32.whl (322.2 kB view details)

Uploaded CPython 3.8Windows x86

gseapy-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

gseapy-1.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

gseapy-1.0.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686manylinux: glibc 2.17+ i686

gseapy-1.0.4-cp38-cp38-macosx_11_0_arm64.whl (447.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

gseapy-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl (473.5 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

gseapy-1.0.4-cp38-cp38-macosx_10_9_universal2.whl (840.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

gseapy-1.0.4-cp37-cp37m-win_amd64.whl (345.3 kB view details)

Uploaded CPython 3.7mWindows x86-64

gseapy-1.0.4-cp37-cp37m-win32.whl (322.2 kB view details)

Uploaded CPython 3.7mWindows x86

gseapy-1.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

gseapy-1.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

gseapy-1.0.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686manylinux: glibc 2.17+ i686

gseapy-1.0.4-cp37-cp37m-macosx_10_9_x86_64.whl (473.3 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file gseapy-1.0.4.tar.gz.

File metadata

  • Download URL: gseapy-1.0.4.tar.gz
  • Upload date:
  • Size: 91.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for gseapy-1.0.4.tar.gz
Algorithm Hash digest
SHA256 4e207e69756fe18add78c60e6f1e7b2feec0683942e65f0f74da28943ce2d08b
MD5 6d499add5a2e697d1994517981142645
BLAKE2b-256 76110c1fe2c07329496cd210d72e56b527f97cafda8fefe60fda1494211e01a6

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 345.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6708efa44746b39ad7f5e8e3756e7381df7057595a5bbb9cc4c4fe010b80bc3b
MD5 c5984166619a9ae7d1ec990ad99a4443
BLAKE2b-256 86457f1c86d75f823a5a8cbb519e1860181c4ed3d14a291b0cfd782d5fb07117

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 322.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f3e664afd092bf24319eed920f049f2f02e8e4d3b00b23997ba2edd46fe171db
MD5 ed848cd49711220ed6d1acd592708e7a
BLAKE2b-256 54dc889d0c0926944a3f632f6c1a9d752d25e5d7804c992c05368cdeeb4c5559

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10f9856883684dc17df6326f8c755276710bc0d17956f44376ca1ac911735849
MD5 473f8d7c5f08971dedc25c675e9e0383
BLAKE2b-256 e360cdb156e7b8a6a18725b1f3e44f7d206e891bff4f2af324144475010d0df5

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af3d5c7f606bbf39937bde97b57ca7980dc2b9e9388f9fdb01cf36d85cf58028
MD5 b90c6490a7e64035486d84ecb17ebcd5
BLAKE2b-256 ccbb5d8e45c8a8ea7e15efb9196973f7321413a5775f0b5c27f8cc0c119ab89f

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5320499c8ebfba2d98a6a37abf36cef9ebaa1de36c5cdc9d59c9adafe710a248
MD5 db0d1ca3a91d2770e5f2017d9abc1517
BLAKE2b-256 59fb670d9f8059ba5e901748c24c3529d5ed6ebba487e403f43702c766cb4df6

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 adfc235e455891855e83c534a68af3ef1f9e9e6f519f550cc1f289336757fbc5
MD5 978a55c379f5647deae781869b73109b
BLAKE2b-256 f83c446a9b17a2314db8499e6b06ba3670fecc6e2e01e15b1cc16faad88dccec

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9a48b7f7eaca4a3a04bee4fddbe427e0ef51aa7726a83fe0a6200fbc35babed
MD5 92916247f25f162c6aa64f915fdef450
BLAKE2b-256 1655feeafb1a569456ce164e177e0f489578e00fd1dba130cddb27b48acc3dd5

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e3707a8659b9de75866ff82d7f8ff49d5bb8c411a73c2e4343919e2827fb50e6
MD5 83a4f43cb1d445759decba5f7cd40ffe
BLAKE2b-256 c8ab3d48ba86b549c968cdb3bf161535947d616c6ab6dc50da511c1105dd1bef

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 345.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ca8c43554933f31009b8cb9ac0452350b382d035422f2b962d73bb082a124fdb
MD5 23192d8eb33b614c339b7927f0d50fd6
BLAKE2b-256 86624fadc7211c4ecbfe2cd91afe09da8c1132594685ebee679248eb8e53e482

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 322.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 51fb413721dd89795009d0bf5c7697f428ea05eaa985be181bfbf3099a05cb57
MD5 eed0fc55ae2d71f6a80b95d6979e2d8a
BLAKE2b-256 46eefeab7bd608e26e7bdc8e4e9e365491759182a34af0881e5df17fed6ec21f

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2142e439c868311e7b661ea5fee61e098b0baf9dc684efb9e348a574092761b6
MD5 a07059038babbc855410e7295fe4c914
BLAKE2b-256 df20e5264d50c2d3ccd7c0fcc6fc461e7764654aec8e77ed6199ae977f6625c1

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb88f7dacdfd9862c14d1fc5ca5ccb0bad8f79ff7116009839d77679b253ed74
MD5 409dc8a19d06fd674525eb076ad5b1df
BLAKE2b-256 f68123a37263faab9bc1e3aaabf08f61868bf8c3d5de19d3f1e5e044835164e8

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6c25e7d39b1b7b9e7f88fdf19aa21ffd413d5a3bd24aee84ebb47967c31750a
MD5 9b7acb8d40cfb7b9d78572435d40edcd
BLAKE2b-256 3efd078c2c3c3611f0973f347a5cca39f475766dd6afe64fd39d5f538dc9b291

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f92244a25417c504b711c1719c5919f4c9d46df69da968f2c7e984d509fcd2f4
MD5 277f5bb90b3c7ba6097b07e8e9086681
BLAKE2b-256 4873495124399a2710c72f22a3a7ed7c131d191072d4b6db257f4af4fcb041d0

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc8db7f38a51fd75ea7976b2da3568fad41df8bbbd7477601e824c35713be903
MD5 b148a0a128b32e2c8a068adf4d4a82a8
BLAKE2b-256 cf44d68bbd4ecc97e1fa47f6cfd03fef8d9fb94e9b61a2fdba6ccc9bb1cb653d

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9c67c7027e776fe5c244ec1daac0bcaad5bcfcf9a429fe1ef713c20219261119
MD5 67dc0aa7f70d4c0d6bbc076b4d73e108
BLAKE2b-256 2d9bf61779cdc7ce5f1679ae371a5a4f4eb052bf19e70f8e440f049f5647e229

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 345.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c4c18e6dc6d80bf67fe827680a5698cddb10ac3e21987c239b773ad9f641f92
MD5 4af409792a3001b1e801c689c76d0882
BLAKE2b-256 cd91cabb2538df9c5ef6d7246219771d6f05f7d8fccac6e38d327a63e439e824

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 322.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7e9da99ccc2369c7ea5667c4d5e8bbd3c3218df797b3d598e6fb8808df98c30a
MD5 10e600fde4cefe30fd07f38e8d720afe
BLAKE2b-256 eb30d366fa50f08168b20d6eb61527404cd5b8bf43a74d6b28f72b683678210e

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 457b5fd3da0b0bf514a2973d877f1c51fd613b47ec879bc31191accb2d4e6092
MD5 3fb886f83909badc06e063f6973db136
BLAKE2b-256 27c88ebc699b14a4a49eccfe0d5efb54bc5ba5748ae830ddc12d66082e67deb8

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f9bcd87f63cf342717a0ae7af265145402e5d8adba95b3e0584646b7d41ea6b
MD5 2d4d1bf652b95cd045eeb520a6d055aa
BLAKE2b-256 c2f3daf05553d40a866dbb9d308e855fbcdcf6232b7f5c1aec96e6d92d201d0a

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 94538f1f9f87d25b97bd7a907a3a6bac9106f8876b373516500401999a89aa08
MD5 d3934c5cca7e735b5fd3679becea849b
BLAKE2b-256 19451c0754b63658fcd4500c88aec6d6a205ee884e4a28929f43d4251f75d6c6

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db0f004bbe5af2a1812ff3703a3e07c5211eeaee724dcaedcaf0a7d93cc7034e
MD5 cd34174dc9fd6cbf9f8f8b6b6dd4d6af
BLAKE2b-256 e1c1cdf9a8be9a26156678e9924fa5397c7f6a65979ff28be73ffebc0d715e49

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29069430036635df3031fd2fade29d4442ddd4244e6299ecf469b8b1daaac821
MD5 d17bd4f0e246f0f3515cdf217148cb3d
BLAKE2b-256 2804843111155a021ab1070de8fd48c2d239073ff0c7779200bde6613adb6a3f

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0d4184dc63392db408a389e80efd224b018b7003c8094f2f501291cf466cffef
MD5 cbdcd17a6a1c9d35342f6ddf87431b17
BLAKE2b-256 130ce3d9958db2d80e47d9613e7aa2db4fd9fd6786af3a5e6ad98e357b957e52

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 345.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d405e4646d8f7d1d0ffef2b172e0eda2b1c50ea6c6e4cdb762cd0258dd1509f1
MD5 6022d4dfd7ab3b6df5c860477578f49e
BLAKE2b-256 9a9769d1a8d92f752436f75a8d364611f2abdc7d7f108c80da79653b977ee5c6

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 322.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a81fcc4a586bed9da2e570501a583e4173e7ad90da3ffbfb6f622c0d5c371215
MD5 edd050adde17699643efcff423d8f7d8
BLAKE2b-256 38f24116e83aa9f02ad68c9c019220fd4c70232f4590af4a49d915f3b44b9e59

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 175e3b134dcec88e756f5588452ecd7097b6181ec99d732ae45fdd32376f5822
MD5 383f50982b21103fdcc9832f8bb9d1bb
BLAKE2b-256 16df785fc445ecd984c894cd695f0d626d062fbf0facad9bc6e75e28f466e991

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fd262d6e22167c73e7863039e70839d6c7477efbf6dd7cb4c66345b9b568846
MD5 47d4e9d2c354cb97f40f610cfb0928b2
BLAKE2b-256 440894c083aaadc822200795cdbdb2ffcb39b86688b053370a233e4e3a7c7f18

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a8780fead6cf072f5e99a6d6d681d02e2ed87a62aacf5750fd37b5c68d8e37f6
MD5 bbcd4d39e18041ea53e84fe941279301
BLAKE2b-256 4bfa22801b55148d606f7e51f5a053163f8ae6384b6be2af9fb3fbf38574b9a2

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16750868bddced04767693620a2df5ef5dea2011d2212b9b42e6c0c996a3dfcd
MD5 a28257ffbaad5b49ecd0455e22cc42af
BLAKE2b-256 b92f8ba57d41bc9552e0f5c31239a1ca31565f921911c9688c0e9db3f69ec9e7

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50de8d2427f57b70bb3bdb940be45f3585044b27e0e485f75d424cac02a12e6e
MD5 02481da9e3229ae705b7b0970b3d4176
BLAKE2b-256 066ce2f672e7571da8e7f56da79622c6c045cc0d29d9241e3f6d5d4aa6481681

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ec63f055bce6f154c9ae2c68a9421258bef313496bd7c90bd990497dad296ea6
MD5 534087b0681cf6083b37b13ababfdf5b
BLAKE2b-256 900e6916b2d81da7ef7458d38540c50b3f6242fe4800f0b973b4c7db013d8887

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 345.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b11669bfb7ecbf9c5f8e39a0e41c34538c98c87b09a003c24965513ff4e01f52
MD5 b4607653540319dab0d0744c603a30d4
BLAKE2b-256 62bfd622e1070f6551df722f66762295ed1d451bdf538f68f6f406759f1aee86

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gseapy-1.0.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 322.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a0528d6d2095f9d189d3ac0613f7e2f52680815f49497dd034bb2d3173d8f307
MD5 97c01ac117c82a8506b5eaef0b7c471f
BLAKE2b-256 53b5b78e7517894695bf5e70d830ed5f99b787a3317c894a3782f9651c4a38f6

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7d2b1d9084965bce7e24b24282104e6453d9c7fffb127533a736f18333ecaa0
MD5 ae4f32afe7550b26aeb42876f4b91162
BLAKE2b-256 eb0760a4c153f4ce54fdbac209421ce883737d426a69d5aa0cb9bb20bbd8ab03

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32c1dba6ae476344818699ab23107e30a4faf2e0fc0308041a90cca0d53af104
MD5 0d257e9ea3f7f22d8d5d1aa832f4c0c6
BLAKE2b-256 c4a94af6f0fb9e3f279ef3f37ab41c88fe7e419d09d3d5903a63c2a470b4f8f9

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e1868ff776bc33b8419c0a9e24e8157077a069940c03fb4240460b1bf945934c
MD5 29bebe179f4bdec5899d70b406237107
BLAKE2b-256 c5f8784e9a787556d172cff5cdba96444bf22f9a1437077e5b489e3b5bc6b78b

See more details on using hashes here.

File details

Details for the file gseapy-1.0.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.0.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c60cdc6a5b1a1f8d494adb07dc686e98ee2697482608a3572f9d70fa817da418
MD5 b62fb5fec921e93cb47e8e671b62f3e5
BLAKE2b-256 aa2b785d41a30474a4103c456acff20a31876a7dd3d5fb51d8b7c63574268c2b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page