Skip to main content

A Hermite function series module.

Project description

Hermite Function Series

A Hermite function series package.

from HermiteFunction import HermiteFunction
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-4, +4, 1000)
for n in range(5):
    poly = HermiteFunction(n)
    plt.plot(x, poly(x), label='$h_{}$'.format(n))
plt.legend(loc='lower right')
plt.show()

png

Installation

pip install hermite-function

Usage

This package provides a single class, HermiteFunction, to handle Hermite function series.

A series can be initialized in three ways:

  • With the constructor, that takes an non-negative integer to create a pure Hermite function with the given index, or an array-like of coefficients to create a Hermite function series.
  • With the random factory for a Hermite series with random indices up to a given degree.
  • By fitting a data set.
f = HermiteFunction((1, 2, 3))
g = HermiteFunction.random(15)
h = HermiteFunction.fit(x, g(x), 10)
plt.plot(x, f(x), label='$f$'), plt.plot(x, g(x), '--', label='$g$'), plt.plot(x, h(x), ':', label='$h$')
plt.legend()
plt.show()

png

Methods for functions, simple evaluation and differentiation to an arbitrary degree, are implemented.

f_p = f.der()
f_pp = f.der(2)
plt.plot(x, f(x), label='$f$'), plt.plot(x, f_p(x), '--', label='$f\'$'), plt.plot(x, f_pp(x), ':', label='$f\'\'$')
plt.legend()
plt.show()

png

Hilbert space operations are also provided, where the Hermite functions are used as an orthonormal basis of the $L_\mathbb{R}^2$ space. Like vector addition, scalar (or elementwise) multiplication, inner product and norm.

g = HermiteFunction(4)
h = f + g
i = 0.5 * f
plt.plot(x, f(x), label='$f$'), plt.plot(x, g(x), '--', label='$g$'), plt.plot(x, h(x), ':', label='$h$'), plt.plot(x, i(x), '-.', label='$i$')
plt.legend()
plt.show()

png

f.dot(h), f.norm()
(14, 3.7416573867739413)

But also the more exotic methods, the evaluation of the kinetic energy and finding $h$ to fulfill $fg=h_0h$ for a given $f, g$ (so $h=\frac{fg}{h_0}$).

f.kin(), str(f.prod_reorder(g))
(12.378679656440358,
 '0.0 h_0 + 0.0 h_1 + 7.3 h_2 + 4.0 h_3 + 18.0 h_4 + 4.5 h_5 + 11.6 h_6')

Proofs

Note: Githubs Latex rendering is buggy, therefore better have a look at the notebook that generated this markdown you are reading right now.

In the following let $$ f=\sum_{k=0}^\infty f_k h_k, \ g=\sum_{k=0}^\infty g_k h_k. $$ where $h_k$ are the Hermite functions, defined by the Hermite polynomials $H_k$: $$ h_k(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2^kk!\sqrt{\pi}}} H_k(x) $$ from Wikipedia - Hermite functions.

Hilbert space operations

Nothing unusual. All the standard $L_\mathbb{R}^2$ operations.

Scalar product

$$ \langle f|g\rangle_{L_\mathbb{R}^2} = \sum_{k=0}^\infty f_k^*g_k $$

Norm

$$ ||f||{L\mathbb{R}^2} = \sqrt{\sum_{k=0}^\infty |f_k|^2} $$

Scalar multiplication

$$ af = \sum_{k=0}^\infty af_kh_k $$

Addition

$$ f+g = \sum_{k=0}^\infty (f_k+g_k)h_k $$

Function operations

Evaluation

$$ f(x) = \sum_{k=0}^\infty f_kh_k(x) $$

Differentiation

$$ \begin{aligned} f' &= \sum_k f_k h_k' &&\mid h'k = \sqrt{\frac{k}{2}}h{k-1} - \sqrt{\frac{k+1}{2}}h_{k+1} \ &= \sum_k f_k \left( \sqrt{\frac{k}{2}}h_{k-1} - \sqrt{\frac{k+1}{2}}h_{k+1} \right) \ &= \sum_{k=0}^\infty f_k\sqrt{\frac{k}{2}} h_{k-1} - \sum_{k=0}^\infty f_k\sqrt{\frac{k+1}{2}} h_{k+1} &&\mid k-1 \to k, \ k+1 \to k \ &= \sum_{k=-1}^\infty \sqrt{\frac{k+1}{2}}f_{k+1} h_k - \sum_{k=1}^\infty \sqrt{\frac{k}{2}}f_{k-1} h_k &&\mid -0+0 = -\sqrt{\frac{-1+1}{2}}f_{-1+1}h_{-1} + \sqrt{\frac{0}{2}}f_{0-1} h_0 \ &= \sum_{k=0}^\infty \sqrt{\frac{k+1}{2}}f_{k+1} h_k - \sum_{k=0}^\infty \sqrt{\frac{k}{2}}f_{k-1} h_k \ &= \sum_k \left( \sqrt{\frac{k+1}{2}}f_{k+1} - \sqrt{\frac{k}{2}}f_{k-1} \right) h_k \end{aligned} \ \begin{pmatrix} f'_0 \ f'_1 \ f'_2 \ f'3 \ \vdots \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{\frac{1}{2}} & 0 & 0 & \ -\sqrt{\frac{1}{2}} & 0 & \sqrt{\frac{2}{2}} & 0 & \cdots \ 0 & -\sqrt{\frac{2}{2}} & 0 & \sqrt{\frac{3}{2}} & \ 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & \ & \vdots & & & \ddots \end{pmatrix} \begin{pmatrix} f_0 \ f_1 \ f_2 \ f_3 \ \vdots \end{pmatrix} $$ With $h'k=\sqrt{\frac{k}{2}}h{k+1}-\sqrt{\frac{k+1}{2}}h{k-1}$ from Wikipedia-Hermite functions.

Integration

TODO

Kinetic energy

$$ T = -\frac{1}{2}\int_{\mathbb{R}}f^*(x)f''(x)dx = +\frac{1}{2}\int_{\mathbb{R}}|f'(x)|^2dx = \frac{1}{2}||f'||{L{\mathbb{R}}^2}^2 $$

''Multiplication''

The product of two Hermite functions is $$ \begin{aligned} &h_i(x) h_j(x) &&\mid h_j(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2^jj!\sqrt{\pi}}}H_j(x) \ &= \frac{e^{-x^2}}{\sqrt{2^{i+j}i!j!\pi}} H_i(x)H_j(x) &&\mid H_j(x) = 2^\frac{j}{2}\tilde{H}j(\sqrt{2}x) \ &= \frac{e^{-x^2}}{\sqrt{2^{i+j} i!j! \pi}} 2^\frac{i+j}{2} \tilde{H}i(\sqrt{2}x) \tilde{H}j(\sqrt{2}x) &&\mid \tilde{H}i\tilde{H}j = \sum{k=0}^{\min{i, j}}k!\binom{i}{k}\binom{j}{k}\tilde{H}{i+j-2k} \ &= \frac{e^{-x^2}}{\sqrt{2^{i+j}i!j!\pi}} 2^\frac{i+j}{2} \sum{k=0}^{\min{i, j}} k!\binom{i}{k}\binom{j}{k} \tilde{H}{i+j-2k}(\sqrt{2}x) &&\mid \cdot1=2^{k-k} \ &= \frac{e^{-x^2}}{\sqrt{2^{i+j}i!j!\pi}}\sum{j=0}^{\min{i, j}} 2^kk!\binom{i}{k}\binom{j}{k}2^\frac{i+j-2k}{2} \tilde{H}{i+j-2k}(\sqrt{2}x) &&\mid H_j(x)=2^\frac{j}{2} \tilde{H}j(\sqrt{2}x) \ &= \frac{e^{-x^2}}{\sqrt{2^{i+j}i!j!\pi}}\sum{k=0}^{\min{i, j}} 2^kk!\binom{i}{k}\binom{j}{k} H{i+j-2k}(x) &&\mid h_j(x)=\frac{e^{-\frac{x^2}{2}}}{\sqrt{2^jj!\sqrt{\pi}}} H_j(x) \ &= \frac{e^{-\frac{x^2}{2}}}{\sqrt{i!j! \sqrt{\pi}}}\sum_{j=0}^{\min{i, j}} k!\binom{i}{k}\binom{j}{k}\sqrt{(i+j-2k)!} h_{i+j-2k}(x) &&\mid h_0(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt[4]{\pi}} \ &= h_0(x)\sum_{k=0}^{\min{i,j}} k!\binom{i}{k}\binom{j}{k}\sqrt{\frac{(i+j-2k)!}{i!j!}} h_{i+j-2k}(x) \ &= h_0(x)\sum_{k=0}^{\min{i,j}} \frac{\sqrt{i!j!(i+j-2k)!}}{k!(i-k)!(j-k)!} h_{i+j-2k}(x) \end{aligned} $$ With

Therefore follows for the products of Hermite series: $$ \begin{aligned} fg &= \sum_if_ih_i \sum_jg_jh_j = \sum_{i, j}f_ig_j h_ih_j \ &\qquad\mid h_ih_j = h_0\sum_{k=0}^{\min{i,j}} k!\binom{i}{k}\binom{j}{k}\sqrt{\frac{(i+j-2k)!}{i!j!}} h_{i+j-2k} \ &= h_0 \sum_{i, j} f_ig_j \sum_{k=0}^{\min{i,j}} k!\binom{i}{k}\binom{j}{k}\sqrt{\frac{(i+j-2k)!}{i!j!}} h_{i+j-2k} \ &\vdots \ &\text{(some steps I am not able to prove)} \ &\vdots \ &= h_0 \sum_{b=0}^\infty \sum_{n=b}^\infty \sum_{d=-b, 2}^{+b} f_{\frac{n-d}{2}}g_{\frac{n+d}{2}} \left(\frac{n-b}{2}\right)!\binom{\frac{n-d}{2}}{\frac{n-b}{2}}\binom{\frac{n+d}{2}}{\frac{n-b}{2}}\sqrt{\frac{\left(\frac{n-b}{2}\right)!}{\left(\frac{n-d}{2}\right)!\left(\frac{n+d}{2}\right)!}} h_b \ &= h_0 \sum_{b=0}^\infty \sum_{n=b}^\infty \sum_{d=0}^b f_{\frac{n+b}{2}-d}g_{\frac{n-b}{2}+d} \left(\frac{n-b}{2}\right)!\binom{\frac{n+b}{2}-d}{\frac{n-b}{2}}\binom{\frac{n-b}{2}+d}{\frac{n-b}{2}}\sqrt{\frac{\left(\frac{n-b}{2}\right)!}{\left(\frac{n+b}{2}-d\right)!\left(\frac{n-b}{2}+d\right)!}} h_b \end{aligned} $$

Trivial tests

# Addition
for n in range(100):
    f = HermiteFunction.random(20)
    g = HermiteFunction.random(np.random.randint(0, 20)) #test different sized
    assert np.allclose((f+g)(x), f(x)+g(x))

# Scalar multiplication
for n in range(100):
    f = HermiteFunction.random(20)
    c = np.random.rand()
    assert np.allclose((c*f)(x), c*(f(x)))

Derivative

def der_num(x, y, n=1):
    """Nummerical differentiation."""
    for _ in range(n):
        y = np.diff(y) / np.diff(x)
        x = (x[1:] + x[:-1]) / 2
    return x, y

for i in range(100):
    f = HermiteFunction(20)
    assert np.allclose(f.der()(der_num(x, f(x))[0]), der_num(x, f(x))[1], atol=1e-3)

Products

from math import sqrt
from scipy.special import binom

for _ in range(100):
    f, g = HermiteFunction.random(11), HermiteFunction.random(14)
    assert np.allclose(f(x)*g(x), HermiteFunction(0)(x)*((f.prod_reorder(g))(x)), atol=1e-4)

Kinetic energy

def kin_num(x, y):
    '''Nummeric kinetic energy.'''
    x, y_lapl = der_num(x, y, 2)
    y = (y[2:] + 2*y[1:-1] + y[:-2]) / 4 #mid y twice to broadcast to y_lapl
    return -np.trapz(y*y_lapl, x) / 2

for _ in range(100):
    f = HermiteFunction.random(5)
    assert np.allclose(f.kin(), kin_num(x, f(x)), atol=1e-2)

Fitting

for _ in range(100):
    f = HermiteFunction.random(20)
    y = f(x)
    fit = HermiteFunction.fit(x, y, 20)
    assert np.allclose(f.coef, fit.coef)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hermite-function-0.9.2.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

hermite_function-0.9.2-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file hermite-function-0.9.2.tar.gz.

File metadata

  • Download URL: hermite-function-0.9.2.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.0

File hashes

Hashes for hermite-function-0.9.2.tar.gz
Algorithm Hash digest
SHA256 7035942fcb64446b48552f1f4143580c6343fc7a510fa74019190b49c56ab60d
MD5 4c68ed8fa0cf7d7ee80e69af37589e81
BLAKE2b-256 1c6af1bcfc8611880a7d96c242dab795856c8f96007bea0db4aa862713450f2a

See more details on using hashes here.

File details

Details for the file hermite_function-0.9.2-py3-none-any.whl.

File metadata

File hashes

Hashes for hermite_function-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 77406739a77b8b378a4fb8b04cb06af6ca1e46be5b7928e51a76fa443bbe93fe
MD5 12868bb5f192d42951841184a9df9906
BLAKE2b-256 03aa779cab4d86fd8d8c10467f19e81e4e031eb7a1852c394c96de8ccefeb64d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page