Skip to main content

Concurrent HDF5 and NetCDF4 reader (experimental)

Project description

Crates.io PyPI Documentation Build (rust) Build (python) codecov Rust nightly

HIDEFIX

This Rust and Python library provides an alternative reader for the HDF5 file or NetCDF4 file (which uses HDF5) which supports concurrent access to data. This is achieved by building an index of the chunks, allowing a thread to use many file handles to read the file. The original (native) HDF5 library is used to build the index, but once it has been created it is no longer needed. The index can be serialized to disk so that performing the indexing is not necessary.

In Rust:

use hidefix::prelude::*;

let idx = Index::index("tests/data/coads_climatology.nc4").unwrap();
let mut r = idx.reader("SST").unwrap();

let values = r.values::<f32>(None, None).unwrap();

println!("SST: {:?}", values);

or with Python using Xarray:

import xarray as xr
import hidefix

ds = xr.open_dataset('file.nc', engine='hidefix')
print(ds)

Motivation

The HDF5 library requires internal locks to be thread-safe since it relies on internal buffers which cannot be safely accessed/written to from multiple threads. This effectively causes multi-threaded applications to use sequential reads, while competing for the locks. And also apparently cause each other trouble, perhaps through dropping cached chunks which other threads still need. It can be safely used from different processes, but that requires potentially much more overhead than multi-threaded or asynchronous code.

Some basic benchmarks

hidefix is intended to perform better when concurrent reads are made either to the same dataset, same file or to different files from a single process. For basic benchmarks the performance is on-par or slightly better compared to doing standard sequential reads than the native HDF5 library (through its rust-bindings). Where hidefix shines is once the multiple threads in the same process tries to read in any way from a HDF5 file simultaneously.

This simple benchmark tries to read a small dataset sequentially or concurrently using the cached reader from hidefix and the native reader from HDF5. The dataset is chunked, shuffled and compressed (using gzip):

$ cargo bench --bench concurrency -- --ignored

test shuffled_compressed::cache_concurrent_reads  ... bench:  15,903,406 ns/iter (+/- 220,824)
test shuffled_compressed::cache_sequential        ... bench:  59,778,761 ns/iter (+/- 602,316)
test shuffled_compressed::native_concurrent_reads ... bench: 411,605,868 ns/iter (+/- 35,346,233)
test shuffled_compressed::native_sequential       ... bench: 103,457,237 ns/iter (+/- 7,703,936)

Inspiration and other projects

This work is based in part on the DMR++ module of the OPeNDAP Hyrax server. The zarr format does something similar, and the same approach has been tested out on HDF5 as swell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hidefix-0.8.0.tar.gz (9.1 MB view details)

Uploaded Source

Built Distribution

hidefix-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.17+ x86-64

File details

Details for the file hidefix-0.8.0.tar.gz.

File metadata

  • Download URL: hidefix-0.8.0.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for hidefix-0.8.0.tar.gz
Algorithm Hash digest
SHA256 a9162d5f881e4b9890d8852f543b85e77ab565ae6b52bfe7420e64002fa3a5ed
MD5 f3cca31f81d896e59aac23cd38a0ee91
BLAKE2b-256 6c28524243bf351a62c511ca93d0d97ea85e8dc167f8c23b1bb27f441c01e3cc

See more details on using hashes here.

File details

Details for the file hidefix-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hidefix-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4570b8548c5df5723c991b8fe406a584fd0b6b24228b33afc32098f84787caa
MD5 36f6e8aa62a93a858673e8018d3260ee
BLAKE2b-256 294fddf9e3414276690bc9b7ff4ccc5a871b81d781e7220d7f36ba39fe9efe10

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page