Skip to main content

Client for Humanloop API

Project description

humanloop@0.4.0a10

Requirements

Python >=3.7

Installing

pip install humanloop==0.4.0a10

Getting Started

from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)

try:
    # Chat
    chat_response = humanloop.chat(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
        stream=False,
    )
    pprint(chat_response.body)
    pprint(chat_response.body["project_id"])
    pprint(chat_response.body["data"][0])
    pprint(chat_response.body["provider_responses"])
    pprint(chat_response.headers)
    pprint(chat_response.status)
    pprint(chat_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .chat: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Complete
    complete_response = humanloop.complete(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
        },
        stream=False,
    )
    pprint(complete_response.body)
    pprint(complete_response.body["project_id"])
    pprint(complete_response.body["data"][0])
    pprint(complete_response.body["provider_responses"])
    pprint(complete_response.headers)
    pprint(complete_response.status)
    pprint(complete_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .complete: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Feedback
    feedback_response = humanloop.feedback(
        type="rating",
        value="good",
        data_id="data_[...]",
        user="user@example.com",
    )
    pprint(feedback_response.body)
    pprint(feedback_response.headers)
    pprint(feedback_response.status)
    pprint(feedback_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .feedback: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Log
    log_response = humanloop.log(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        output="Llamas can be friendly and curious if they are trained to be around people, but if they are treated too much like pets when they are young, they can become difficult to handle when they grow up. This means they might spit, kick, and wrestle with their necks.",
        source="sdk",
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
        },
    )
    pprint(log_response.body)
    pprint(log_response.headers)
    pprint(log_response.status)
    pprint(log_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .log: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

Async

async support is available by prepending a to any method.

import asyncio
from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    try:
        complete_response = await humanloop.acomplete(
            project="sdk-example",
            inputs={
                "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
            },
            model_config={
                "model": "gpt-3.5-turbo",
                "max_tokens": -1,
                "temperature": 0.7,
                "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            },
            stream=False,
        )
        pprint(complete_response.body)
        pprint(complete_response.body["project_id"])
        pprint(complete_response.body["data"][0])
        pprint(complete_response.body["provider_responses"])
        pprint(complete_response.headers)
        pprint(complete_response.status)
        pprint(complete_response.round_trip_time)
    except ApiException as e:
        print("Exception when calling .complete: %s\n" % e)
        pprint(e.body)
        if e.status == 422:
            pprint(e.body["detail"])
        pprint(e.headers)
        pprint(e.status)
        pprint(e.reason)
        pprint(e.round_trip_time)


asyncio.run(main())

Streaming

Streaming support is available by suffixing a chat or complete method with _stream.

import asyncio
from humanloop import Humanloop

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    response = await humanloop.chat_stream(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
    )
    async for token in response.content:
        print(token)


asyncio.run(main())

Author

This Python package is automatically generated by Konfig

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

humanloop-0.4.0a10.tar.gz (151.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

humanloop-0.4.0a10-py3-none-any.whl (644.2 kB view details)

Uploaded Python 3

File details

Details for the file humanloop-0.4.0a10.tar.gz.

File metadata

  • Download URL: humanloop-0.4.0a10.tar.gz
  • Upload date:
  • Size: 151.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.0a10.tar.gz
Algorithm Hash digest
SHA256 0732e51a4c93c933b7c77dafa888080abfaca6e9ded17d6c9a1b1e8df2fdbccd
MD5 d0023da692da5f452b6e0525829fd8b9
BLAKE2b-256 5f81d5a4257cb7c1df41a2a850ad81f54779024e357c7d191ee4da993f04423d

See more details on using hashes here.

File details

Details for the file humanloop-0.4.0a10-py3-none-any.whl.

File metadata

  • Download URL: humanloop-0.4.0a10-py3-none-any.whl
  • Upload date:
  • Size: 644.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.0a10-py3-none-any.whl
Algorithm Hash digest
SHA256 bc6505b7dde9b962b4a6099e879fe9d4a93ea50296e22c95843ad82ba8ffa016
MD5 8ddc268ae99271eb471c8a893a3999d8
BLAKE2b-256 3fa364c7c5241b62e1046d5fec6bd51d25e1b627a3000de1830ecdfa6483aa1e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page