Skip to main content

Client for Humanloop API

Project description

humanloop@0.4.0a12

Requirements

Python >=3.7

Installing

pip install humanloop==0.4.0a12

Getting Started

from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)

try:
    # Chat
    chat_response = humanloop.chat(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
        stream=False,
    )
    pprint(chat_response.body)
    pprint(chat_response.body["project_id"])
    pprint(chat_response.body["data"][0])
    pprint(chat_response.body["provider_responses"])
    pprint(chat_response.headers)
    pprint(chat_response.status)
    pprint(chat_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .chat: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Complete
    complete_response = humanloop.complete(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
        },
        stream=False,
    )
    pprint(complete_response.body)
    pprint(complete_response.body["project_id"])
    pprint(complete_response.body["data"][0])
    pprint(complete_response.body["provider_responses"])
    pprint(complete_response.headers)
    pprint(complete_response.status)
    pprint(complete_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .complete: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Feedback
    feedback_response = humanloop.feedback(
        type="rating",
        value="good",
        data_id="data_[...]",
        user="user@example.com",
    )
    pprint(feedback_response.body)
    pprint(feedback_response.headers)
    pprint(feedback_response.status)
    pprint(feedback_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .feedback: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

try:
    # Log
    log_response = humanloop.log(
        project="sdk-example",
        inputs={
            "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
        },
        output="Llamas can be friendly and curious if they are trained to be around people, but if they are treated too much like pets when they are young, they can become difficult to handle when they grow up. This means they might spit, kick, and wrestle with their necks.",
        source="sdk",
        config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            "type": "model",
        },
    )
    pprint(log_response.body)
    pprint(log_response.headers)
    pprint(log_response.status)
    pprint(log_response.round_trip_time)
except ApiException as e:
    print("Exception when calling .log: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

Async

async support is available by prepending a to any method.

import asyncio
from pprint import pprint
from humanloop import Humanloop, ApiException

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    try:
        complete_response = await humanloop.acomplete(
            project="sdk-example",
            inputs={
                "text": "Llamas that are well-socialized and trained to halter and lead after weaning and are very friendly and pleasant to be around. They are extremely curious and most will approach people easily. However, llamas that are bottle-fed or over-socialized and over-handled as youth will become extremely difficult to handle when mature, when they will begin to treat humans as they treat each other, which is characterized by bouts of spitting, kicking and neck wrestling.[33]",
            },
            model_config={
                "model": "gpt-3.5-turbo",
                "max_tokens": -1,
                "temperature": 0.7,
                "prompt_template": "Summarize this for a second-grade student:\n\nText:\n{{text}}\n\nSummary:\n",
            },
            stream=False,
        )
        pprint(complete_response.body)
        pprint(complete_response.body["project_id"])
        pprint(complete_response.body["data"][0])
        pprint(complete_response.body["provider_responses"])
        pprint(complete_response.headers)
        pprint(complete_response.status)
        pprint(complete_response.round_trip_time)
    except ApiException as e:
        print("Exception when calling .complete: %s\n" % e)
        pprint(e.body)
        if e.status == 422:
            pprint(e.body["detail"])
        pprint(e.headers)
        pprint(e.status)
        pprint(e.reason)
        pprint(e.round_trip_time)


asyncio.run(main())

Streaming

Streaming support is available by suffixing a chat or complete method with _stream.

import asyncio
from humanloop import Humanloop

humanloop = Humanloop(
    api_key="YOUR_API_KEY",
    openai_api_key="YOUR_OPENAI_API_KEY",
    ai21_api_key="YOUR_AI21_API_KEY",
    mock_api_key="YOUR_MOCK_API_KEY",
    anthropic_api_key="YOUR_ANTHROPIC_API_KEY",
)


async def main():
    response = await humanloop.chat_stream(
        project="sdk-example",
        messages=[
            {
                "role": "user",
                "content": "Explain asynchronous programming.",
            }
        ],
        model_config={
            "model": "gpt-3.5-turbo",
            "max_tokens": -1,
            "temperature": 0.7,
            "chat_template": [
                {
                    "role": "system",
                    "content": "You are a helpful assistant who replies in the style of {{persona}}.",
                },
            ],
        },
        inputs={
            "persona": "the pirate Blackbeard",
        },
    )
    async for token in response.content:
        print(token)


asyncio.run(main())

Author

This Python package is automatically generated by Konfig

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

humanloop-0.4.0a12.tar.gz (151.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

humanloop-0.4.0a12-py3-none-any.whl (644.4 kB view details)

Uploaded Python 3

File details

Details for the file humanloop-0.4.0a12.tar.gz.

File metadata

  • Download URL: humanloop-0.4.0a12.tar.gz
  • Upload date:
  • Size: 151.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.0a12.tar.gz
Algorithm Hash digest
SHA256 bd4b919dcebc7835b508cccbf57e0e5f8d4596e5720c939e519119d090f9d365
MD5 d91293f20309a1ca681ae62149ab7a23
BLAKE2b-256 4a4ae365438ffaca975cb9c759d4b0a2057638d41f650085938c5bcfe32cda94

See more details on using hashes here.

File details

Details for the file humanloop-0.4.0a12-py3-none-any.whl.

File metadata

  • Download URL: humanloop-0.4.0a12-py3-none-any.whl
  • Upload date:
  • Size: 644.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for humanloop-0.4.0a12-py3-none-any.whl
Algorithm Hash digest
SHA256 cf4107d7e849f4b9c927d74cf228c70e3c4567be9861ab6bb0c9509b058c2ddd
MD5 8b227f74c3d4443c5d71a1b13c847a82
BLAKE2b-256 f3cf8ba3fbe912ae849fb34c9c0cbdf8c8dd5bc429219bf006e2392e1358985c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page