Hurst exponent evaluation and R/S-analysis
Project description
hurst
Hurst exponent evaluation and R/S-analysis
hurst is a small Python module for analysing random walks and evaluating the Hurst exponent (H).
H = 0.5 — Brownian motion,
0.5 < H < 1.0 — persistent behavior,
0 < H < 0.5 — anti-persistent behavior.
Installation
Install hurst module with
pip install hurst
or
pip install -e git+https://github.com/Mottl/hurst#egg=hurst
Usage
import numpy as np
import matplotlib.pyplot as plt
from hurst import compute_Hc, random_walk
# Use random_walk() function or generate a random walk series manually:
# series = random_walk(99999, cumprod=True)
np.random.seed(42)
random_changes = 1. + np.random.randn(99999) / 1000.
series = np.cumprod(random_changes) # create a random walk from random changes
# Evaluate Hurst equation
H, c, data = compute_Hc(series, kind='price', simplified=True)
# Plot
f, ax = plt.subplots()
ax.plot(data[0], c*data[0]**H, color="deepskyblue")
ax.scatter(data[0], data[1], color="purple")
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('Time interval')
ax.set_ylabel('R/S ratio')
ax.grid(True)
plt.show()
print("H={:.4f}, c={:.4f}".format(H,c))
H=0.4964, c=1.4877
Kinds of series
The kind parameter of the compute_Hc function can have the following values:
'change': a series is just random values (i.e. np.random.randn(...))
'random_walk': a series is a cumulative sum of changes (i.e. np.cumsum(np.random.randn(...)))
'price': a series is a cumulative product of changes (i.e. np.cumprod(1+epsilon*np.random.randn(...))
Brownian motion, persistent and antipersistent random walks
You can generate random walks with random_walk() function as following:
Brownian
brownian = random_walk(99999, proba=0.5)
Persistent
persistent = random_walk(99999, proba=0.7)
Antipersistent
antipersistent = random_walk(99999, proba=0.3)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file hurst-0.0.5-py3-none-any.whl.
File metadata
- Download URL: hurst-0.0.5-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.6.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d163f11fe2318aa8979c921d6667b8dfd6205c629924fefbed68505357cf995e
|
|
| MD5 |
42b4c739a49ead3a6ea9eb450a7161e2
|
|
| BLAKE2b-256 |
024fd3471ce0dca03a21d4c6640da07a6040c9cc800a937233086b6cea6a7dc2
|