Skip to main content

Hurst exponent evaluation and R/S-analysis

Project description


Hurst exponent evaluation and R/S-analysis

pypi Python 2.7 Python 3x Build Status

hurst is a small Python module for analysing random walks and evaluating the Hurst exponent (H).

H = 0.5 — Brownian motion,
0.5 < H < 1.0 — persistent behavior,
0 < H < 0.5 — anti-persistent behavior.


Install hurst module with

pip install hurst


pip install -e
import matplotlib.pyplot as plt
import numpy as np
import matplotplotlib.pyplot as plt
from hurst import compute_Hc, random_walk

# Use random_walk() function or generate a random walk series manually:
# series = random_walk(99999, cumprod=True)
random_changes = 1. + np.random.randn(99999) / 1000.
series = np.cumprod(random_changes)  # create a random walk from random changes

# Evaluate Hurst equation
H, c, data = compute_Hc(series, kind='price', simplified=True)

# Plot
f, ax = plt.subplots()
ax.plot(data[0], c*data[0]**H, color="deepskyblue")
ax.scatter(data[0], data[1], color="purple")
ax.set_xlabel('Time interval')
ax.set_ylabel('R/S ratio')

print("H={:.4f}, c={:.4f}".format(H,c))

R/S analysis

H=0.4964, c=1.4877

Brownian motion, persistent and antipersistent random walks

You can generate random walks with random_walk() function as following:


brownian = random_walk(99999, proba=0.5)

Brownian motion


persistent = random_walk(99999, proba=0.7)

Persistent random walk


antipersistent = random_walk(99999, proba=0.3)

Antipersistent random walk

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for hurst, version 0.0.3
Filename, size File type Python version Upload date Hashes
Filename, size hurst-0.0.3-py3-none-any.whl (4.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size hurst-0.0.3.tar.gz (4.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page