Skip to main content

Converts An Image to a CSV. This exists because Chorus 3.0 are bat-shit and only show images for vital metadata.

Project description


AboutInstallationShell UsageLicense

About

Converts An Image to a CSV. This exists because Chorus 3.0 are bat-shit and only show images for vital metadata

Installation

pip install imagetocsv

Terminal Usage

Usage: imagetocsv [OPTIONS] IMAGE_PATH [CSV_PATH]

  Console script for imagetocsv.

Options:
  --version                 Show the version and exit.
  -v, --verbose             Vebosity level, ex. -vvvvv for debug level logging
  -n, --index_name TEXT     Index Name for the CSV file
  -i, --index TEXT          Index for the CSV file
  -c, --column_header TEXT  Columns for the CSV file
  -p, --preconfigured-options TEXT

  --help                    Show this message and exit.

Terminal Simple Examples

$ imagetocsv myimage.png mytable.csv
# For the source image this was built for 
$ imagetocsv -p bib myimage.png  

Terminal Advance Example

Adding Index Name, Index, and Column Header. They needs to match the deminsions of the matrix!

$ imagetocsv \ 
        image.jpg table.csv \
        --index_name "Population" \
        --index "All Events,Lymphocytes,Single cells...,Single cells...,Live/Dead,CD19+ Dump-,Naive gD+,Memory IgD-,IgD- KO-,P15-1,P15-2,P15-3,P15-4,MARIO WT++,P14-1,P14-2,P14-3,P14-4" \
        --column_header "Events,%Parent,%Total,FSC-A Median,FSC-A %rCV,SSC-A Median,SSC-A %rCV" 

Python Simple Usage

from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example


df = imagetocsv(no_grid_example)
print(df.to_markdown())
0 1 2 3 4 5 6
0 598150 100.00% 123428.50 57.53% 130689.00 50.55%
1 237987 39.79% 39.79% 134356.00 14.45% 102556.00 30.89%
2 228000 95.80% 38.12% 433804.00 13.96% 100917.00 29.64%
3 222453 97.57% 37.19% 133307.00 13.63% 100091.00 29.09%
4 212474 95.51% 35.52% 134238.00 12.97% 9700.00 29.27%
5 55885 26.30% 9.34% 131386.00 13.34% 93086.00 27.69%
6 34745 56.80% 5.31% 127549.00 10.25% 88501.00 24.60%
7 22496 40.25% 3.76% 14152450 15.79% 102606.00 30.31%
8 17409 77.39% 2.91% 144624.00 14.88% 107966.00 28.93%
9 2663 15.30% 0.45% 163750.00 11.93% 130908.00 26.18%
10 5 0.03% 0.00% 166073.00 5.07% 160211.00 6.57%
11 14736 84.65% 2.46% 14126450 14.20% 103995.00 28.13%
12 5 0.03% 0.00% 162803.00 6.04% 156540.00 9.02%
13 0 0.00% 0.00%
14 8888 39.51% 1.49% 431473.00 15.37% 90965.50 28.65%
15 1806 8.03% 0.30% 153347.00 12.19% 121119.50 24.60%
16 4896 21.76% 0.82% 141244.00 16.41% 101527.00 30.63%
17 6906 30.70% 1.15% 147753.00 12.13% 113108.50 25.94%

Python Advanced Usage

from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example


df = imagetocsv(
        no_grid_example,
        index_name="Population",
        index=[
                "All Events",
                "Lymphocytes",
                "Single cells...",
                "Single cells...",
                "Live/Dead",
                "CD19+ Dump-",
                "Naive gD+",
                "Memory IgD-",
                "IgD- KO-",
                "P15-1",
                "P15-2",
                "P15-3",
                "P15-4",
                "MARIO WT++",
                "P14-1",
                "P14-2",
                "P14-3",
                "P14-4",
        ],
        column_header=["Events", "% Parent", "% Total", "FSC-A Median", "FSC-A %rCV", "SSC-A Median", "SSC-A %rCV"],
)
print(df.to_markdown())
Population Events % Parent % Total FSC-A Median FSC-A %rCV SSC-A Median SSC-A %rCV
All Events 598,150 100.00% 123428.50 57.53% 130689.00 50.55%
Lymphocytes 237,987 39.79% 39.79% 134356.00 14.45% 102556.00 30.89%
Single cells... 228,000 95.80% 38.12% 433804.00 13.96% 100917.00 29.64%
Single cells... 222,453 97.57% 37.19% 133307.00 13.63% 100091.00 29.09%
Live/Dead 212,474 95.51% 35.52% 134238.00 12.97% 9700.00 29.27%
CD19+ Dump- 55,885 26.30% 9.34% 131386.00 13.34% 93086.00 27.69%
Naive gD+ 34,745 56.80% 5.31% 127549.00 10.25% 88501.00 24.60%
Memory IgD- 22,496 40.25% 3.76% 14152450 15.79% 102606.00 30.31%
IgD- KO- 17,409 77.39% 2.91% 144624.00 14.88% 107966.00 28.93%
P15-1 2,663 15.30% 0.45% 163750.00 11.93% 130908.00 26.18%
P15-2 5 0.03% 0.00% 166073.00 5.07% 160211.00 6.57%
P15-3 14,736 84.65% 2.46% 14126450 14.20% 103995.00 28.13%
P15-4 5 0.03% 0.00% 162803.00 6.04% 156540.00 9.02%
MARIO WT++ 0 0.00% 0.00%
P14-1 8,888 39.51% 1.49% 431473.00 15.37% 90965.50 28.65%
P14-2 1,806 8.03% 0.30% 153347.00 12.19% 121119.50 24.60%
P14-3 4896 21.76% 0.82% 141244.00 16.41% 101527.00 30.63%
P14-4 6,906 30.70% 1.15% 147753.00 12.13% 113108.50 25.94%

License

License

  • Copyright © Troy M. Sincomb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

imagetocsv-0.1.0-py2.py3-none-any.whl (9.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file imagetocsv-0.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: imagetocsv-0.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for imagetocsv-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1cda1ff8f389e1180a2986bbec11812f3f634d0f8896d211b2388016adbb1c68
MD5 2b1dab357296ce161bfb7a83c98ac50d
BLAKE2b-256 64491b7a85dc137134fd473caa050fca3e21c960c2c2d55094a171e746b4e57f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page