Converts An Image to a CSV. This exists because Chorus 3.0 are bat-shit and only show images for vital metadata.
Project description
About • Installation • Shell Usage • License
About
Converts An Image to a CSV. This exists because Chorus 3.0 are bat-shit and only show images for vital metadata
Installation
pip install imagetocsv
Terminal Usage
Usage: imagetocsv [OPTIONS] IMAGE_PATH [CSV_PATH]
Console script for imagetocsv.
Options:
--version Show the version and exit.
-v, --verbose Vebosity level, ex. -vvvvv for debug level logging
-n, --index_name TEXT Index Name for the CSV file
-i, --index TEXT Index for the CSV file
-c, --column_header TEXT Columns for the CSV file
-p, --preconfigured-options TEXT
--help Show this message and exit.
Terminal Simple Examples
$ imagetocsv myimage.png mytable.csv
# For the source image this was built for
$ imagetocsv -p bib myimage.png
Terminal Advance Example
Adding Index Name, Index, and Column Header. They needs to match the deminsions of the matrix!
$ imagetocsv \
image.jpg table.csv \
--index_name "Population" \
--index "All Events,Lymphocytes,Single cells...,Single cells...,Live/Dead,CD19+ Dump-,Naive gD+,Memory IgD-,IgD- KO-,P15-1,P15-2,P15-3,P15-4,MARIO WT++,P14-1,P14-2,P14-3,P14-4" \
--column_header "Events,%Parent,%Total,FSC-A Median,FSC-A %rCV,SSC-A Median,SSC-A %rCV"
Python Simple Usage
from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example
df = imagetocsv(no_grid_example)
print(df.to_markdown())
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 598150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
1 | 237987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
2 | 228000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
3 | 222453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
4 | 212474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
5 | 55885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
6 | 34745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
7 | 22496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
8 | 17409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
9 | 2663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
10 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
11 | 14736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
12 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
13 | 0 | 0.00% | 0.00% | ||||
14 | 8888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
15 | 1806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
16 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
17 | 6906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
Python Advanced Usage
from imagetocsv import imagetocsv
from imagetocsv.examples import no_grid_example
df = imagetocsv(
no_grid_example,
index_name="Population",
index=[
"All Events",
"Lymphocytes",
"Single cells...",
"Single cells...",
"Live/Dead",
"CD19+ Dump-",
"Naive gD+",
"Memory IgD-",
"IgD- KO-",
"P15-1",
"P15-2",
"P15-3",
"P15-4",
"MARIO WT++",
"P14-1",
"P14-2",
"P14-3",
"P14-4",
],
column_header=["Events", "% Parent", "% Total", "FSC-A Median", "FSC-A %rCV", "SSC-A Median", "SSC-A %rCV"],
)
print(df.to_markdown())
Population | Events | % Parent | % Total | FSC-A Median | FSC-A %rCV | SSC-A Median | SSC-A %rCV |
---|---|---|---|---|---|---|---|
All Events | 598,150 | 100.00% | 123428.50 | 57.53% | 130689.00 | 50.55% | |
Lymphocytes | 237,987 | 39.79% | 39.79% | 134356.00 | 14.45% | 102556.00 | 30.89% |
Single cells... | 228,000 | 95.80% | 38.12% | 433804.00 | 13.96% | 100917.00 | 29.64% |
Single cells... | 222,453 | 97.57% | 37.19% | 133307.00 | 13.63% | 100091.00 | 29.09% |
Live/Dead | 212,474 | 95.51% | 35.52% | 134238.00 | 12.97% | 9700.00 | 29.27% |
CD19+ Dump- | 55,885 | 26.30% | 9.34% | 131386.00 | 13.34% | 93086.00 | 27.69% |
Naive gD+ | 34,745 | 56.80% | 5.31% | 127549.00 | 10.25% | 88501.00 | 24.60% |
Memory IgD- | 22,496 | 40.25% | 3.76% | 14152450 | 15.79% | 102606.00 | 30.31% |
IgD- KO- | 17,409 | 77.39% | 2.91% | 144624.00 | 14.88% | 107966.00 | 28.93% |
P15-1 | 2,663 | 15.30% | 0.45% | 163750.00 | 11.93% | 130908.00 | 26.18% |
P15-2 | 5 | 0.03% | 0.00% | 166073.00 | 5.07% | 160211.00 | 6.57% |
P15-3 | 14,736 | 84.65% | 2.46% | 14126450 | 14.20% | 103995.00 | 28.13% |
P15-4 | 5 | 0.03% | 0.00% | 162803.00 | 6.04% | 156540.00 | 9.02% |
MARIO WT++ | 0 | 0.00% | 0.00% | ||||
P14-1 | 8,888 | 39.51% | 1.49% | 431473.00 | 15.37% | 90965.50 | 28.65% |
P14-2 | 1,806 | 8.03% | 0.30% | 153347.00 | 12.19% | 121119.50 | 24.60% |
P14-3 | 4896 | 21.76% | 0.82% | 141244.00 | 16.41% | 101527.00 | 30.63% |
P14-4 | 6,906 | 30.70% | 1.15% | 147753.00 | 12.13% | 113108.50 | 25.94% |
License
- Copyright © Troy M. Sincomb
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file imagetocsv-0.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: imagetocsv-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cda1ff8f389e1180a2986bbec11812f3f634d0f8896d211b2388016adbb1c68 |
|
MD5 | 2b1dab357296ce161bfb7a83c98ac50d |
|
BLAKE2b-256 | 64491b7a85dc137134fd473caa050fca3e21c960c2c2d55094a171e746b4e57f |