Skip to main content

The feature points could be used obtain salient points while performing registration using RANSAC remote module. The class PointFeature is the main driver that takes a PointSet as argument. Please refer to the documentation for a detailed description and sample usage: https://github.com/InsightSoftwareConsortium/ITKFPFH

Project description

ITKFPFH

Overview

Module to calculate FPFH feature for a pointset. Sample Usage is shown below:

# normal_pointset is ITK Pointset which contains normal vector for each point
# pointset is ITK Pointset which contains the input points for which feature needs to be calculated

# normal_np is numpy array of shape [Nx3]
# fpfh_feature is numpy array of shape [33xN]
# 25 is the radius and 100 is the maximum number of neighbors

pointset = itk.PointSet[itk.F, 3].New()
normal_pointset = itk.PointSet[itk.F, 3].New()

normal_pointset.SetPoints(itk.vector_container_from_array(normal_np.flatten()))
fpfh = itk.Fpfh.PointFeature.MF3MF3.New()
fpfh.ComputeFPFHFeature(pointset, normal_pointset, 25, 100)
fpfh_feature = fpfh.GetFpfhFeature()
fpfh_feature = itk.array_from_vector_container(fpfh_feature)
fpfh_feature = np.reshape(fpfh_feature, [33, pointset.GetNumberOfPoints()])

One can obtain the normals using the following code:

def getnormals_pca(inputPoints):
    import vtk
    from vtk.util import numpy_support
    meshPoints = numpy_to_vtk_polydata(inputPoints)
    normals = vtk.vtkPCANormalEstimation()
    normals.SetSampleSize(30)
    normals.SetFlipNormals(True)
    #normals.SetNormalOrientationToPoint()
    normals.SetNormalOrientationToGraphTraversal()
    normals.SetInputData(meshPoints)
    normals.Update()
    as_numpy = numpy_support.vtk_to_numpy(normals.GetOutput().GetPointData().GetArray(0))
    return as_numpy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

itk_fpfh-0.2.1-cp311-abi3-win_amd64.whl (460.0 kB view details)

Uploaded CPython 3.11+Windows x86-64

itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.1-cp311-abi3-macosx_11_0_arm64.whl (305.5 kB view details)

Uploaded CPython 3.11+macOS 11.0+ ARM64

itk_fpfh-0.2.1-cp310-cp310-win_amd64.whl (460.6 kB view details)

Uploaded CPython 3.10Windows x86-64

itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (303.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

itk_fpfh-0.2.1-cp39-cp39-win_amd64.whl (461.3 kB view details)

Uploaded CPython 3.9Windows x86-64

itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (303.9 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file itk_fpfh-0.2.1-cp311-abi3-win_amd64.whl.

File metadata

  • Download URL: itk_fpfh-0.2.1-cp311-abi3-win_amd64.whl
  • Upload date:
  • Size: 460.0 kB
  • Tags: CPython 3.11+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.24

File hashes

Hashes for itk_fpfh-0.2.1-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 60abb93990b6e1f448361149e9f7fdf59bcff907331635d7fd5e515ea2c0d97b
MD5 2e182745cdb9a904fc95ad2d7fee3722
BLAKE2b-256 8f428b909f698b685c2baef7e637e73fc1e17c248a8570f4b1da9af8292cc3ac

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6a35a6f2db419ff499d2085688ded2eb6c1b0f94af0adf1439ad68a33e384ae3
MD5 e9a3bec752d325a6c1b9b088158cc4e3
BLAKE2b-256 bdd87301646c1b704fc6dc61cd22796dc628b542f79100c144bfb2a15e2720b3

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp311-abi3-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 30299b7c91c09bb3cb88688b992d6e31856f4d96df6864f699a2d24c2d57d5f1
MD5 de62ba1c80cfc7f4b16359aa3be8d9fb
BLAKE2b-256 0b2f6d57add1e8f99774831cf388a73b28c551633af3b606f92c0c92984f8bcd

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2349cc02d95fa101b0a679bb10e3b675b7e5793f8246b1ad629aed9357b921f0
MD5 45578d8e567c3ef022408f9d21319f13
BLAKE2b-256 ff2e747aac5d0cd19029b78388d7544643ea37f949f3cc8fc8f0b6444c556660

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp311-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp311-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b602d35df1dcbdbf9b2e9fda1884b507a4a98877a18b0424c9622a7d45f19f16
MD5 e480e67f4e76519ab29ad0da7bcd76ea
BLAKE2b-256 f9f59e3618a2a92a8a5f562c291216bdefd64b4f0bfe27691b36f8c23831892f

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: itk_fpfh-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 460.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.24

File hashes

Hashes for itk_fpfh-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c865a07e7fddeb30c40e0da9894699ef89df9379b00e3967f39b0e85060cd420
MD5 b3773079fb06a6dcd8bc891719d7e215
BLAKE2b-256 310e88dd1ef7bfe3b453fc6d50797e3d0a509556326e4dad8e3f150d52099387

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1dbe2576f4fa8b07731a910c42918215b274112743de3e59b8f3834a6f5ca19f
MD5 d4b608c414b4509ede5d7620136d7548
BLAKE2b-256 81eab539081cde30b96e6e45671c5c7c26a02c8c8b991930516f9d5616ce33dd

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0f81feba21a20c77b5ac0baa70f13133f48a2b36ca36e9baac251e56e737bd35
MD5 d20b2d4a0db6c3fe727ffa702cc5d034
BLAKE2b-256 2e6e29d754f5a2386b81b1a9766019a766bc4439793f09e0f48c9308538faac3

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd5d9cd1ce9c6960099e8b2f7fcc46c31470236736eb5896bd641adda2de156e
MD5 7b3cc23e6e3067b3efb1586d207c9547
BLAKE2b-256 7200e883600700721752a735865f0822f43c46574546b263e5b5259c1a8ed189

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7741b81eaaf0d5ece54001fb624a50fb0cd46f775b5210b53c9a20ed52938c96
MD5 61c6f88e6485e8e58f9f8bd4674f48ac
BLAKE2b-256 a475e6f86f55b1cb98b53474f3b4677ee9365a727d6ee77608b9fe72a35912b8

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk_fpfh-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 461.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.24

File hashes

Hashes for itk_fpfh-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a71bfa451622bbcf463daedcd26092bfd612d6efd99f0cee6c1b96c3546a0153
MD5 4e703c02472628689bed80a182842376
BLAKE2b-256 eb06d3a70dfacac18083326034709d30576aa1e274a1d4dcbb762d0a9b028a4c

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 64ad6ac76c7e703237e34079c9acb2a849785ec616153d6fc575b5fbfedb7191
MD5 90d988ddb80814ef4e42be1715015d42
BLAKE2b-256 040924f9ae64213e740dadfd1c1f0dfc5dd79fa8d63672dd3ad34cda047658a2

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 834423c98676185bfeb2b0d2c8776c8c4d36e5edc39410d4d9e0b2d818c98310
MD5 0ee9c291c2dcf5b1a93db3fc362880ec
BLAKE2b-256 e8e19c661b37fa1da55d7e2e78f8df9f57171b3ec748d87e35d8579be93fa0c5

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97942dd04d7b43b0bae3e5787263890a198a7a1b8aaa8cd7548f1e050ebf54a4
MD5 731cdbcd1e6da7f6d597bf76c666bbfa
BLAKE2b-256 173721a6b5d0917ccf0bf178e48525ff54f2d44bded896d5a05765288bae706a

See more details on using hashes here.

File details

Details for the file itk_fpfh-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_fpfh-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3861a7bffadf532223e5cc998998746be9d3df967b51a3b2f985e2171e4c8d1
MD5 c8a5ace9d9e26662488ee9773c8bc3c9
BLAKE2b-256 85e9801262dd96ac6f95933ed4f8aff38e3363af1bc892d270c878555f470657

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page