Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
Windows Build Status Build Status
macOS Build Status Build Status
macOS (Apple Silicon) ITK.macOS.Arm64
Linux (Code coverage) Build Status

Links

Note: For questions related to ITK, please use the official Discussion space: the issue tracker is reserved to track different aspects of the software development process, as highlighted by the available templates.

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_io-5.4.4.post1-cp311-abi3-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.11+Windows x86-64

itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.28+ x86-64

itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.28+ ARM64

itk_io-5.4.4.post1-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.11+manylinux: glibc 2.17+ x86-64

itk_io-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl (18.6 MB view details)

Uploaded CPython 3.11+macOS 11.0+ ARM64

itk_io-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.11+macOS 10.9+ x86-64

itk_io-5.4.4.post1-cp310-cp310-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.10Windows x86-64

itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

itk_io-5.4.4.post1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

itk_io-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl (18.6 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

itk_io-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

itk_io-5.4.4.post1-cp39-cp39-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.9Windows x86-64

itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

itk_io-5.4.4.post1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

itk_io-5.4.4.post1-cp39-cp39-macosx_11_0_arm64.whl (18.6 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

itk_io-5.4.4.post1-cp39-cp39-macosx_10_9_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 59a67fd887f022236b0e27cee9253f1f061e54af983a0b04d8a36601e0f711ce
MD5 1987f5f38eb0dcaaa34ca3e8561ddd31
BLAKE2b-256 c4be64ff93dd72e8dbc8a002a535c316d8f72ddd1928c41af0a573e7f5fa058f

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 43a6eb4775afa89bd8d9b3f48e26372869b041c445055cc63d2ef7eba46d2380
MD5 aafafee9afe2be25361d23b8c204efbc
BLAKE2b-256 9ca933f799db5e6cb53755753d4ce44712b7019e94c4a6d3a0073ef20054e9c4

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d58b06ec0b3bbe432c3f7c06c7606dc16838738fa90ba35efc1324c678c0d325
MD5 c95896423a0a5ef8c0d2a92decde09e5
BLAKE2b-256 af2823739525d3f80cc0d944af5f6c285bbd74e2b884ea055f222a25dff5cce4

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7938e905d7c77a0ed9341feb56a1aa88cb68f7c0f71fc25664b211df8e4e6851
MD5 dc3efdd84057ee26ef31775c5794cbfd
BLAKE2b-256 7d0e7a0e2c54a5d8298442e2296b9c475fcee03dae36a795fc05e79ede809c1c

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c59f4fb228a8ef1858d200937b08d5caadca9cffe6a3c4ca947567481988dc3
MD5 b8b9397680db2e73021848ea686de7b9
BLAKE2b-256 2484323c9e095684b545e679088ce9b0999529d9171dcce03538dbd267109113

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6c59a0c09de31d92cc191578bdf314ea87e32554b06ad504c8ec9abf91a2b8c
MD5 f85120f91f62ae36425be01d18da0e2d
BLAKE2b-256 79a7fa3473b04b17c4877abc122447ab3a2832b4675bbc836691f7e488dd2531

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 da158f9b8f1cf7eac6ac642590119d34e8b25d28a1d80980bb268edca60a65a9
MD5 147c8e4c5b525423b61e20ade903ddde
BLAKE2b-256 29967ea71485790ea2bf74fc75760763534c8fc43b28532764c57522cad8b65d

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 df5692ebc4f8c5bde198b186cb907da7c6772ca7d3def12d5384b1e2c9636d89
MD5 32592026c2774a25ca1290563fba65a5
BLAKE2b-256 fd26cc4e60cd58ef2a27b4602e284a99cc4d82526c1ae1629474000f3406efd2

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e4ec243a204eb356db9646b235b79e8be2b7a2778815b8a317caab8f96c61ff7
MD5 ab1db7c45360014291cb6c47f25919a0
BLAKE2b-256 bddfb1110558a61b6656692c833e52f762d64d680294b0ed7eba8271d589066f

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 64b26a53ef9f2b80bc206a48a83287bffb048cda85b1d386b3520f21a6f2e349
MD5 ede35fb656e15afdaf584611e80a78b3
BLAKE2b-256 7aceb2bbbd785412f3f0bcc1de5bf4bd2b721fbd562dee38a9ccb6a97b7f6262

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ce7a257489a13f480018984e4a6ceb8cab59363f8f3f1d2295269eeee2ac353
MD5 548d75119003c67a634d6ce1f6cc52f2
BLAKE2b-256 6128beedae5e88764748f1c852d369bf7e24665490b57061c7fc11013a4eaf7e

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d83ed3a61c3bfceaa95fa3e8d853fe4b36122c86ed6690af273cc3f261d62bc9
MD5 f57c932ad2edb78e4832362208853dc2
BLAKE2b-256 d968cb772dbd2534b4d3ce534ad9a437a4000fa2b8c493330c63c2e832040ff7

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.4.4.post1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 70db6afaf430394c71668c47d4059d54f7c71d313a346fea2ecddbca2f28104f
MD5 91fe8cef3b2c18022ac74357db26a068
BLAKE2b-256 6d09818838187e174cbcdf5c79af6a45acc1e7115e1af5302972b0df17904d34

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d5e40bbb7cd1843f4cf4b49b05afd0c0c549d7196fb6a317b58bd579598ecbe0
MD5 bdc94b5b446ff79722cd5fb14057c5bf
BLAKE2b-256 4df7ed5bdd8032187b0f7fb627612357949148a034aa62383202cd6ec9e6ab6d

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 55f938cfc6b9c3aafe62f3588606afd6ccabe75faeba729f96547e329cbe9fc4
MD5 64749da6f843032ae20dc09f8aab6b75
BLAKE2b-256 7412e0e7d5370025c0b65656001ad7af605e60efea9db74e13a430bfafada4cf

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5115f2e927ca3a0f79731b8c5cb756aeb812d3e1de0cd6d5995e6ad1393cfdba
MD5 993cf05e388ad473d94baea87bd044d3
BLAKE2b-256 733d696ecca81c3428c6b06e5e7b8642642dceb2cb861f9ce840e477f596293a

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6a4cbf9408b6298e15f8d5e7f3fbaef5602069110d4ff64ed8a908fd2c4b09ca
MD5 812b73dd90a0069102eabc8be1579b89
BLAKE2b-256 29859ab14bc6a66d1601518f4bec9e1950c73a5cade0f1c9d46a811df4a055ed

See more details on using hashes here.

File details

Details for the file itk_io-5.4.4.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.4.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e8b262e3b3f2817f3c5220fdf28cf4f7a6b4da90fe2d263ed62f57586b96d0d
MD5 5afaa18cf3a48160e7682720401ec964
BLAKE2b-256 19f8fe957435076be6d66e435be33183b5bbf156783c385ae02a0ce95ae80cd2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page