Skip to main content

jarvis-tools: an open-source software package for data-driven atomistic materials design. https://jarvis.nist.gov/

Project description

https://circleci.com/gh/usnistgov/jarvis.svg?style=shield https://img.shields.io/travis/usnistgov/jarvis/master.svg?label=Travis%20CI https://ci.appveyor.com/api/projects/status/d8na8vyfm7ulya9p/branch/master?svg=true https://github.com/usnistgov/jarvis/workflows/JARVIS-Tools%20github%20action/badge.svg https://github.com/usnistgov/jarvis/workflows/JARVIS-Tools%20linting/badge.svg https://readthedocs.org/projects/jarvis-tools/badge/?version=latest https://img.shields.io/codecov/c/github/knc6/jarvis https://img.shields.io/pypi/dm/jarvis-tools.svg https://pepy.tech/badge/jarvis-tools https://zenodo.org/badge/DOI/10.5281/zenodo.3903515.svg https://img.shields.io/github/v/tag/usnistgov/jarvis https://app.codacy.com/project/badge/Grade/be8fa78b1c0a49c280415ce061163e77 https://img.shields.io/github/commit-activity/y/usnistgov/jarvis https://img.shields.io/github/repo-size/usnistgov/jarvis https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Ftwitter.com%2Fjarvisnist https://img.shields.io/badge/Facebook-Follow-Blue.svg https://img.shields.io/badge/LinkedIn-Follow-Blue.svg

JARVIS-Tools: an open-source software package for data-driven atomistic materials design

NIST-JARVIS (Joint Automated Repository for Various Integrated Simulations) is an integrated framework for computational science using density functional theory, classical force-field/molecular dynamics and machine-learning. The jarvis-tools package consists of scripts used in generating and analyzing the dataset. The NIST-JARVIS official website is: https://jarvis.nist.gov . This project is a part of the Materials Genome Initiative (MGI) at NIST (https://mgi.nist.gov/).

For more details, checkout our latest article: JARVIS: An Integrated Infrastructure for Data-driven Materials Design

https://www.ctcms.nist.gov/~knc6/images/logo/jarvis-mission.png

Some important features

  • Software workflow tasks: VASP, Quantum Espresso, BoltzTrap, Wannier90, LAMMPS, Scikit-learn, TensorFlow, LightGBM.
  • HPC clusters: PBS and SLURM.
  • Examples: Notebooks and test scripts to explain the package.
  • Available datasets: Summary of several datasets .

Installation

Please see Installation instructions

Example Jupyter notebooks

Please find several Google Colab Notebooks

Example function

>>> from jarvis.core.atoms import Atoms
>>> box = [[2.715, 2.715, 0], [0, 2.715, 2.715], [2.715, 0, 2.715]]
>>> coords = [[0, 0, 0], [0.25, 0.25, 0.25]]
>>> elements = ["Si", "Si"]
>>> Si = Atoms(lattice_mat=box, coords=coords, elements=elements)
>>> density = round(Si.density,2)
>>> print (density)
2.33
>>>
>>> from jarvis.db.figshare import data
>>> dft_3d = data(dataset='dft_3d')
>>> print (len(dft_3d))
36099

References

Please see Publications related to JARVIS-Tools

Correspondence

Please report bugs as Github issues (https://github.com/usnistgov/jarvis/issues) or email to kamal.choudhary@nist.gov.

Funding support

NIST-MGI (https://www.nist.gov/mgi).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for jarvis-tools, version 2020.9.22
Filename, size File type Python version Upload date Hashes
Filename, size jarvis_tools-2020.9.22-py2.py3-none-any.whl (851.2 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size jarvis-tools-2020.9.22.tar.gz (777.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page