Attention mechanism for processing sequential data that considers the context for each timestamp
Project description
Keras Self-Attention
Attention mechanism for processing sequential data that considers the context for each timestamp.
Install
pip install keras-self-attention
Usage
Basic
By default, the attention layer uses additive attention and considers the whole context while calculating the relevance. The following code creates an attention layer that follows the equations in the first section (attention_activation
is the activation function of e_{t, t'}
):
import keras
from keras_self_attention import SeqSelfAttention
model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=10000,
output_dim=300,
mask_zero=True))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=128,
return_sequences=True)))
model.add(SeqSelfAttention(attention_activation='sigmoid'))
model.add(keras.layers.Dense(units=5))
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['categorical_accuracy'],
)
model.summary()
Local Attention
The global context may be too broad for one piece of data. The parameter attention_width
controls the width of the local context:
from keras_self_attention import SeqSelfAttention
SeqSelfAttention(
attention_width=15,
attention_activation='sigmoid',
name='Attention',
)
Multiplicative Attention
You can use multiplicative attention by setting attention_type
:
from keras_self_attention import SeqSelfAttention
SeqSelfAttention(
attention_width=15,
attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
attention_activation=None,
kernel_regularizer=keras.regularizers.l2(1e-6),
use_attention_bias=False,
name='Attention',
)
Regularizer
To use the regularizer, set attention_regularizer_weight
to a positive number:
import keras
from keras_self_attention import SeqSelfAttention
inputs = keras.layers.Input(shape=(None,))
embd = keras.layers.Embedding(input_dim=32,
output_dim=16,
mask_zero=True)(inputs)
lstm = keras.layers.Bidirectional(keras.layers.LSTM(units=16,
return_sequences=True))(embd)
att = SeqSelfAttention(attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
kernel_regularizer=keras.regularizers.l2(1e-4),
bias_regularizer=keras.regularizers.l1(1e-4),
attention_regularizer_weight=1e-4,
name='Attention')(lstm)
dense = keras.layers.Dense(units=5, name='Dense')(att)
model = keras.models.Model(inputs=inputs, outputs=[dense])
model.compile(
optimizer='adam',
loss={'Dense': 'sparse_categorical_crossentropy'},
metrics={'Dense': 'categorical_accuracy'},
)
model.summary(line_length=100)
Load the Model
Make sure to add SeqSelfAttention
to custom objects:
import keras
keras.models.load_model(model_path, custom_objects=SeqSelfAttention.get_custom_objects())
History Only
Set history_only
to True
when only historical data could be used:
SeqSelfAttention(
attention_width=3,
history_only=True,
name='Attention',
)
Multi-Head
Please refer to keras-multi-head.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for keras-self-attention-0.51.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77fce72b12d235722cbbcf7da5b3609b89ee212f5f07352945cc088e850900e9 |
|
MD5 | 7bc0e7a51eb634705a34b7a7361261d5 |
|
BLAKE2b-256 | d5a50a1d003e420da49791f64def11d8d2837280e1a680c2eaaab216f9f17ed7 |