Skip to main content

Attention mechanism for processing sequential data that considers the context for each timestamp

Project description

Keras Self-Attention

Version License

[中文|English]

Attention mechanism for processing sequential data that considers the context for each timestamp.

Install

pip install keras-self-attention

Usage

Basic

By default, the attention layer uses additive attention and considers the whole context while calculating the relevance. The following code creates an attention layer that follows the equations in the first section (attention_activation is the activation function of e_{t, t'}):

import keras
from keras_self_attention import SeqSelfAttention


model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=10000,
                                 output_dim=300,
                                 mask_zero=True))
model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=128,
                                                       return_sequences=True)))
model.add(SeqSelfAttention(attention_activation='sigmoid'))
model.add(keras.layers.Dense(units=5))
model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['categorical_accuracy'],
)
model.summary()

Local Attention

The global context may be too broad for one piece of data. The parameter attention_width controls the width of the local context:

from keras_self_attention import SeqSelfAttention

SeqSelfAttention(
    attention_width=15,
    attention_activation='sigmoid',
    name='Attention',
)

Multiplicative Attention

You can use multiplicative attention by setting attention_type:

from keras_self_attention import SeqSelfAttention

SeqSelfAttention(
    attention_width=15,
    attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
    attention_activation=None,
    kernel_regularizer=keras.regularizers.l2(1e-6),
    use_attention_bias=False,
    name='Attention',
)

Regularizer

To use the regularizer, set attention_regularizer_weight to a positive number:

import keras
from keras_self_attention import SeqSelfAttention

inputs = keras.layers.Input(shape=(None,))
embd = keras.layers.Embedding(input_dim=32,
                              output_dim=16,
                              mask_zero=True)(inputs)
lstm = keras.layers.Bidirectional(keras.layers.LSTM(units=16,
                                                    return_sequences=True))(embd)
att = SeqSelfAttention(attention_type=SeqSelfAttention.ATTENTION_TYPE_MUL,
                       kernel_regularizer=keras.regularizers.l2(1e-4),
                       bias_regularizer=keras.regularizers.l1(1e-4),
                       attention_regularizer_weight=1e-4,
                       name='Attention')(lstm)
dense = keras.layers.Dense(units=5, name='Dense')(att)
model = keras.models.Model(inputs=inputs, outputs=[dense])
model.compile(
    optimizer='adam',
    loss={'Dense': 'sparse_categorical_crossentropy'},
    metrics={'Dense': 'categorical_accuracy'},
)
model.summary(line_length=100)

Load the Model

Make sure to add SeqSelfAttention to custom objects:

import keras

keras.models.load_model(model_path, custom_objects=SeqSelfAttention.get_custom_objects())

History Only

Set history_only to True when only historical data could be used:

SeqSelfAttention(
    attention_width=3,
    history_only=True,
    name='Attention',
)

Multi-Head

Please refer to keras-multi-head.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-self-attention-0.51.0.tar.gz (11.1 kB view details)

Uploaded Source

File details

Details for the file keras-self-attention-0.51.0.tar.gz.

File metadata

  • Download URL: keras-self-attention-0.51.0.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.6.12

File hashes

Hashes for keras-self-attention-0.51.0.tar.gz
Algorithm Hash digest
SHA256 77fce72b12d235722cbbcf7da5b3609b89ee212f5f07352945cc088e850900e9
MD5 7bc0e7a51eb634705a34b7a7361261d5
BLAKE2b-256 d5a50a1d003e420da49791f64def11d8d2837280e1a680c2eaaab216f9f17ed7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page