Skip to main content

A Model Context Protocol (MCP) server for Kubernetes

Project description

Kubectl MCP Tool

A Model Context Protocol (MCP) server for Kubernetes that enables AI assistants like Claude, Cursor, and others to interact with Kubernetes clusters through natural language.

License: MIT Python Kubernetes MCP PyPI version PyPI - Python Version

Features

Core Kubernetes Operations

  • Connect to a Kubernetes cluster
  • List and manage pods, services, deployments, and nodes
  • Create, delete, and describe pods and other resources
  • Get pod logs and Kubernetes events
  • Support for Helm v3 operations (installation, upgrades, uninstallation)
  • kubectl explain and api-resources support
  • Choose namespace for next commands (memory persistence)
  • Port forward to pods
  • Scale deployments and statefulsets
  • Execute commands in containers
  • Manage ConfigMaps and Secrets
  • Rollback deployments to previous versions
  • Ingress and NetworkPolicy management
  • Context switching between clusters

Natural Language Processing

  • Process natural language queries for kubectl operations
  • Context-aware commands with memory of previous operations
  • Human-friendly explanations of Kubernetes concepts
  • Intelligent command construction from intent
  • Fallback to kubectl when specialized tools aren't available
  • Mock data support for offline/testing scenarios
  • Namespace-aware query handling

Monitoring

  • Cluster health monitoring
  • Resource utilization tracking
  • Pod status and health checks
  • Event monitoring and alerting
  • Node capacity and allocation analysis
  • Historical performance tracking
  • Resource usage statistics via kubectl top
  • Container readiness and liveness tracking

Security

  • RBAC validation and verification
  • Security context auditing
  • Secure connections to Kubernetes API
  • Credentials management
  • Network policy assessment
  • Container security scanning
  • Security best practices enforcement
  • Role and ClusterRole management
  • ServiceAccount creation and binding
  • PodSecurityPolicy analysis
  • RBAC permissions auditing
  • Security context validation

Diagnostics

  • Cluster diagnostics and troubleshooting
  • Configuration validation
  • Error analysis and recovery suggestions
  • Connection status monitoring
  • Log analysis and pattern detection
  • Resource constraint identification
  • Pod health check diagnostics
  • Common error pattern identification
  • Resource validation for misconfigurations
  • Detailed liveness and readiness probe validation

Advanced Features

  • Multiple transport protocols support (stdio, SSE)
  • Integration with multiple AI assistants
  • Extensible tool framework
  • Custom resource definition support
  • Cross-namespace operations
  • Batch operations on multiple resources
  • Intelligent resource relationship mapping
  • Error explanation with recovery suggestions
  • Volume management and identification

Architecture

Model Context Protocol (MCP) Integration

The Kubectl MCP Tool implements the Model Context Protocol (MCP), enabling AI assistants to interact with Kubernetes clusters through a standardized interface. The architecture consists of:

  1. MCP Server: A compliant server that handles requests from MCP clients (AI assistants)
  2. Tools Registry: Registers Kubernetes operations as MCP tools with schemas
  3. Transport Layer: Supports stdio, SSE, and HTTP transport methods
  4. Core Operations: Translates tool calls to Kubernetes API operations
  5. Response Formatter: Converts Kubernetes responses to MCP-compliant responses

Request Flow

Request Flow

Dual Mode Operation

The tool operates in two modes:

  1. CLI Mode: Direct command-line interface for executing Kubernetes operations
  2. Server Mode: Running as an MCP server to handle requests from AI assistants

Installation

For detailed installation instructions, please see the Installation Guide.

You can install kubectl-mcp-tool directly from PyPI:

pip install kubectl-mcp-tool

For a specific version:

pip install kubectl-mcp-tool==1.1.1

The package is available on PyPI: https://pypi.org/project/kubectl-mcp-tool/1.1.1/

Prerequisites

  • Python 3.9+
  • kubectl CLI installed and configured
  • Access to a Kubernetes cluster
  • pip (Python package manager)

Global Installation

# Install latest version from PyPI
pip install kubectl-mcp-tool

# Or install development version from GitHub
pip install git+https://github.com/rohitg00/kubectl-mcp-server.git

Local Development Installation

# Clone the repository
git clone https://github.com/rohitg00/kubectl-mcp-server.git
cd kubectl-mcp-server

# Install in development mode
pip install -e .

Verifying Installation

After installation, verify the tool is working correctly:

# Check CLI mode
kubectl-mcp --help

Note: This tool is designed to work as an MCP server that AI assistants connect to, not as a direct kubectl replacement. The primary command available is kubectl-mcp serve which starts the MCP server.

Usage with AI Assistants

Using the Minimal Wrapper

The minimal wrapper (kubectl_mcp_tool.minimal_wrapper) is a simplified MCP server implementation that provides better compatibility across different AI assistants and addresses common issues:

  1. Direct Configuration

    {
      "mcpServers": {
        "kubernetes": {
          "command": "python",
          "args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
          "env": {
            "KUBECONFIG": "/path/to/your/.kube/config",
            "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin",
            "MCP_LOG_FILE": "/path/to/logs/debug.log",
            "MCP_DEBUG": "1"
          }
        }
      }
    }
    
  2. Key Environment Variables

    • MCP_LOG_FILE: Path to log file (recommended to avoid stdout pollution)
    • MCP_DEBUG: Set to "1" for verbose logging
    • MCP_TEST_MOCK_MODE: Set to "1" to use mock data instead of real cluster
    • KUBECONFIG: Path to your Kubernetes config file
    • KUBECTL_MCP_LOG_LEVEL: Set to "DEBUG", "INFO", "WARNING", or "ERROR"
  3. Testing the Minimal Wrapper You can test if the wrapper is working correctly with:

    python -m kubectl_mcp_tool.simple_ping
    

    This will attempt to connect to the server and execute a ping command.

Claude Desktop

Add the following to your Claude Desktop configuration at ~/.config/claude/mcp.json (Windows: %APPDATA%\Claude\mcp.json):

{
  "mcpServers": {
    "kubernetes": {
      "command": "python",
      "args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
      "env": {
        "KUBECONFIG": "/path/to/your/.kube/config",
        "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin",
        "PYTHONPATH": "/path/to/kubectl-mcp-server",
        "MCP_DEBUG": "1"
      }
    }
  }
}

For GKE clusters, use this enhanced configuration:

{
  "mcpServers": {
    "kubernetes": {
      "command": "python",
      "args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
      "env": {
        "KUBECONFIG": "/path/to/your/.kube/config",
        "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/path/to/google-cloud-sdk/bin",
        "USE_GKE_GCLOUD_AUTH_PLUGIN": "True",
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/gcp-credentials.json",
        "MCP_TEST_MOCK_MODE": "0",
        "PYTHONPATH": "/path/to/kubectl-mcp-server",
        "MCP_DEBUG": "1"
      }
    }
  }
}

The latest version includes enhanced JSON sanitization to handle special characters and timestamp prefixes, resolving common "Unexpected non-whitespace character after JSON at position 4" errors.

Cursor AI

Add the following to your Cursor AI settings under MCP by adding a new global MCP server:

{
  "mcpServers": {
    "kubernetes": {
      "command": "python",
      "args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
      "env": {
        "KUBECONFIG": "/path/to/your/.kube/config",
        "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/homebrew/bin"
      }
    }
  }
}

Save this configuration to ~/.cursor/mcp.json for global settings.

Note: Replace /path/to/your/.kube/config with the actual path to your kubeconfig file. On most systems, this is ~/.kube/config.

Windsurf

Add the following to your Windsurf configuration at ~/.config/windsurf/mcp.json (Windows: %APPDATA%\WindSurf\mcp.json):

{
  "mcpServers": {
    "kubernetes": {
      "command": "python",
      "args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
      "env": {
        "KUBECONFIG": "/path/to/your/.kube/config"
      }
    }
  }
}

Automatic Configuration

For automatic configuration of all supported AI assistants, run the provided installation script:

bash install.sh

This script will:

  1. Install the required dependencies
  2. Create configuration files for Claude, Cursor, and WindSurf
  3. Set up the correct paths and environment variables
  4. Test your Kubernetes connection

Prerequisites

  1. kubectl installed and in your PATH
  2. A valid kubeconfig file
  3. Access to a Kubernetes cluster
  4. Helm v3 (optional, for Helm operations)

Examples

List Pods

List all pods in the default namespace

Deploy an Application

Create a deployment named nginx-test with 3 replicas using the nginx:latest image

Check Pod Logs

Get logs from the nginx-test pod

Port Forwarding

Forward local port 8080 to port 80 on the nginx-test pod

Development

# Clone the repository
git clone https://github.com/rohitg00/kubectl-mcp-server.git
cd kubectl-mcp-server

# Install dependencies
pip install -r requirements.txt

# Install in development mode
pip install -e .

# Run tests
python -m python_tests.test_all_features

Project Structure

├── kubectl_mcp_tool/         # Main package
│   ├── __init__.py           # Package initialization
│   ├── cli.py                # CLI entry point
│   ├── mcp_server.py         # MCP server implementation
│   ├── mcp_kubectl_tool.py   # Main kubectl MCP tool implementation
│   ├── natural_language.py   # Natural language processing
│   ├── diagnostics.py        # Diagnostics functionality
│   ├── core/                 # Core functionality 
│   ├── security/             # Security operations
│   ├── monitoring/           # Monitoring functionality
│   ├── utils/                # Utility functions
│   └── cli/                  # CLI functionality components
├── python_tests/             # Test suite
│   ├── run_mcp_tests.py      # Test runner script
│   ├── mcp_client_simulator.py # MCP client simulator for mock testing
│   ├── test_utils.py         # Test utilities
│   ├── test_mcp_core.py      # Core MCP tests
│   ├── test_mcp_security.py  # Security tests
│   ├── test_mcp_monitoring.py # Monitoring tests
│   ├── test_mcp_nlp.py       # Natural language tests
│   ├── test_mcp_diagnostics.py # Diagnostics tests
│   └── mcp_test_strategy.md  # Test strategy documentation
├── docs/                     # Documentation
│   ├── README.md             # Documentation overview
│   ├── INSTALLATION.md       # Installation guide
│   ├── integration_guide.md  # Integration guide
│   ├── cursor/               # Cursor integration docs
│   ├── windsurf/             # Windsurf integration docs
│   └── claude/               # Claude integration docs
├── compatible_servers/       # Compatible MCP server implementations
│   ├── cursor/               # Cursor-compatible servers
│   ├── windsurf/             # Windsurf-compatible servers
│   ├── minimal/              # Minimal server implementations
│   └── generic/              # Generic MCP servers
├── requirements.txt          # Python dependencies
├── setup.py                  # Package setup script
├── pyproject.toml            # Project configuration
├── MANIFEST.in               # Package manifest
├── LICENSE                   # MIT License
├── CHANGELOG.md              # Version history
├── .gitignore                # Git ignore file
├── install.sh                # Installation script
├── publish.sh                # PyPI publishing script
└── start_mcp_server.sh       # Server startup script

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kubectl_mcp_tool-1.1.1.tar.gz (97.2 kB view details)

Uploaded Source

Built Distribution

kubectl_mcp_tool-1.1.1-py3-none-any.whl (115.7 kB view details)

Uploaded Python 3

File details

Details for the file kubectl_mcp_tool-1.1.1.tar.gz.

File metadata

  • Download URL: kubectl_mcp_tool-1.1.1.tar.gz
  • Upload date:
  • Size: 97.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.0

File hashes

Hashes for kubectl_mcp_tool-1.1.1.tar.gz
Algorithm Hash digest
SHA256 32e874f7e14b38d9fa453ac58e974c80f7e142494d6c6d8a8671c04afcf4805b
MD5 45ff6b589f1c23ab9809280709909825
BLAKE2b-256 4c95b75fbc947e6a699856f58412085301f047dbdf7d36b79acfdaebfe15067a

See more details on using hashes here.

File details

Details for the file kubectl_mcp_tool-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for kubectl_mcp_tool-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cbf7f0e40c858e1da42b66c08a5d2d2d83375caa738efe79af54d213ef6e314f
MD5 6c0574d8ad9d413f076c4b36b4bb063c
BLAKE2b-256 3fa6930a2af7c1784ba77ae41dc1b4c19b500d19e5a6dbc0c7fe94866c0c172b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page