Skip to main content

An integration package connecting OpenGradient and LangChain

Project description

langchain-opengradient

This package contains the LangChain integration with OpenGradient.

More information about OpenGradient can be found here.

Installation

pip install -U langchain-opengradient

And you should configure credentials by setting the following environment variables:

OPENGRADIENT_PRIVATE_KEY - Your OpenGradient private API key

If you do not have an OpenGradient private key configured you can get one by running

pip install opengradient
opengradient config init

Toolkits

OpenGradientToolkit class provides a set of functions for creating tools that integrate OpenGradient models and workflows into LangChain agents.

from langchain_opengradient import OpenGradientToolkit
import opengradient as og
from pydantic import BaseModel, Field
from typing import List

# Initialize the toolkit
# Either set the environment variable "OPENGRADIENT_PRIVATE_KEY"
# or directly pass in private key.
toolkit = OpenGradientToolkit(private_key="MY_PRIVATE_KEY")

# Example 1: Create a volatility prediction tool with no input schema
def model_input_provider():
    return {
        "open_high_low_close": [
            [2535.79, 2535.79, 2505.37, 2515.36],
            [2515.37, 2516.37, 2497.27, 2506.94],
            # ... more price data
        ]
    }
    
def output_formatter(inference_result):
    return format(float(inference_result.model_output["Y"].item()), ".3%")
    
volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmRhcpDXfYCKsimTmJYrAVM4Bbvck59Zb2onj3MHv9Kw5N",
    tool_name="eth_usdt_volatility",
    model_input_provider=model_input_provider,
    model_output_formatter=output_formatter,
    tool_description="Generates volatility measurement for ETH/USDT",
    inference_mode=og.InferenceMode.VANILLA,
)

# Example 2: Create a tool with an input schema
class VolatilityInputSchema(BaseModel):
    token: str = Field(description="Token name (e.g., 'ethereum' or 'bitcoin')")

def model_input_provider_with_schema(**llm_input):
    token = llm_input.get("token")
    # Fetch appropriate data based on token
    if token == "bitcoin":
        return {"price_series": [100001.1, 100013.2, 100149.2, 99998.1]}    # Replace with live data
    elif token == "ethereum":
        return {"price_series": [2010.1, 2012.3, 2020.1, 2019.2]}           # Replace with live data
    else:  # ethereum
        raise ValueError("Received unexpected token")

token_volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmZdSfHWGJyzBiB2K98egzu3MypPcv4R1ASypUxwZ1MFUG",
    tool_name="token_volatility",
    model_input_provider=model_input_provider_with_schema,
    model_output_formatter=lambda x: format(float(x.model_output["std"].item()), ".3%"),
    tool_input_schema=VolatilityInputSchema,
    tool_description="Measures return volatility for specified token"
)

# Example 3: Create a workflow reading tool
workflow_tool = toolkit.create_read_workflow_tool(
    workflow_contract_address="0x58826c6dc9A608238d9d57a65bDd50EcaE27FE99",
    tool_name="ETH_Price_Forecast",
    tool_description="Reads latest forecast for ETH price",
    output_formatter=lambda x: f"Price change forecast: {
        format(float(x.numbers['regression_output'].item()), '.2%')
        }"
)

# Add tools to the toolkit
toolkit.add_tool(volatility_tool)
toolkit.add_tool(token_volatility_tool)
toolkit.add_tool(workflow_tool)

# Get all tools
tools = toolkit.get_tools()

# Use with an agent
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

llm = ChatOpenAI()
agent_executor = create_react_agent(llm, tools)

example_query ="What's the current volatility of ETH/USDT?"

events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
    )

for event in events:
    event["messages"][-1].pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_opengradient-0.1.2.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

langchain_opengradient-0.1.2-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_opengradient-0.1.2.tar.gz.

File metadata

  • Download URL: langchain_opengradient-0.1.2.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.1 CPython/3.13.2 Darwin/24.1.0

File hashes

Hashes for langchain_opengradient-0.1.2.tar.gz
Algorithm Hash digest
SHA256 a731de936e0362d8c6858843b24e59b3e90334787a64d53ad0a280295300d130
MD5 534b87739adef020b888e8ae91d18e9b
BLAKE2b-256 349c5eae573760ccec4ebbe7544e57523b9cd34119b630914ee84bf4f2f65ced

See more details on using hashes here.

File details

Details for the file langchain_opengradient-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_opengradient-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 84854b1c3dfaeb52a3dae3957cd2724cae28ba04d71326c651efc9d072218fd3
MD5 39573546e812cf967f58f1cb098bbdc8
BLAKE2b-256 b298a5578f61b5cd65cccb5f19353885b6b90a965711eee05f259d609cb259f7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page