Skip to main content

An integration package connecting OpenGradient and LangChain

Project description

langchain-opengradient

This package contains the LangChain integration with OpenGradient.

More information about OpenGradient can be found here.

Installation

pip install -U langchain-opengradient

And you should configure credentials by setting the following environment variables:

OPENGRADIENT_PRIVATE_KEY - Your OpenGradient private API key

If you do not have an OpenGradient private key configured you can get one by running

pip install opengradient
opengradient config init

Toolkits

OpenGradientToolkit class provides a set of functions for creating tools that integrate OpenGradient models and workflows into LangChain agents.

from langchain_opengradient import OpenGradientToolkit
import opengradient as og
from pydantic import BaseModel, Field
from typing import List

# Initialize the toolkit
# Either set the environment variable "OPENGRADIENT_PRIVATE_KEY"
# or directly pass in private key.
toolkit = OpenGradientToolkit(private_key="MY_PRIVATE_KEY")

# Example 1: Create a volatility prediction tool with no input schema
def model_input_provider():
    return {
        "open_high_low_close": [
            [2535.79, 2535.79, 2505.37, 2515.36],
            [2515.37, 2516.37, 2497.27, 2506.94],
            # ... more price data
        ]
    }
    
def output_formatter(inference_result):
    return format(float(inference_result.model_output["Y"].item()), ".3%")
    
volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmRhcpDXfYCKsimTmJYrAVM4Bbvck59Zb2onj3MHv9Kw5N",
    tool_name="eth_usdt_volatility",
    model_input_provider=model_input_provider,
    model_output_formatter=output_formatter,
    tool_description="Generates volatility measurement for ETH/USDT",
    inference_mode=og.InferenceMode.VANILLA,
)

# Example 2: Create a tool with an input schema
class VolatilityInputSchema(BaseModel):
    token: str = Field(description="Token name (e.g., 'ethereum' or 'bitcoin')")

def model_input_provider_with_schema(**llm_input):
    token = llm_input.get("token")
    # Fetch appropriate data based on token
    if token == "bitcoin":
        return {"price_series": [100001.1, 100013.2, 100149.2, 99998.1]}    # Replace with live data
    elif token == "ethereum":
        return {"price_series": [2010.1, 2012.3, 2020.1, 2019.2]}           # Replace with live data
    else:  # ethereum
        raise ValueError("Received unexpected token")

token_volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmZdSfHWGJyzBiB2K98egzu3MypPcv4R1ASypUxwZ1MFUG",
    tool_name="token_volatility",
    model_input_provider=model_input_provider_with_schema,
    model_output_formatter=lambda x: format(float(x.model_output["std"].item()), ".3%"),
    tool_input_schema=VolatilityInputSchema,
    tool_description="Measures return volatility for specified token"
)

# Example 3: Create a workflow reading tool
workflow_tool = toolkit.create_read_workflow_tool(
    workflow_contract_address="0x58826c6dc9A608238d9d57a65bDd50EcaE27FE99",
    tool_name="ETH_Price_Forecast",
    tool_description="Reads latest forecast for ETH price",
    output_formatter=lambda x: f"Price change forecast: {
        format(float(x.numbers['regression_output'].item()), '.2%')
        }"
)

# Add tools to the toolkit
toolkit.add_tool(volatility_tool)
toolkit.add_tool(token_volatility_tool)
toolkit.add_tool(workflow_tool)

# Get all tools
tools = toolkit.get_tools()

# Use with an agent
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

llm = ChatOpenAI()
agent_executor = create_react_agent(llm, tools)

example_query ="What's the current volatility of ETH/USDT?"

events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
    )

for event in events:
    event["messages"][-1].pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_opengradient-0.1.1.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

langchain_opengradient-0.1.1-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_opengradient-0.1.1.tar.gz.

File metadata

  • Download URL: langchain_opengradient-0.1.1.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.1 CPython/3.13.2 Darwin/24.1.0

File hashes

Hashes for langchain_opengradient-0.1.1.tar.gz
Algorithm Hash digest
SHA256 b0e78f5b7b59cbf14b8edb6a85b402489635b5126cfa3faed6900d98b7493003
MD5 93f7beb783d3cd4f187b50436ccce8d0
BLAKE2b-256 ca886ec6011d8af32b976c3a01dd4640c02bcce4c1029e3e26938078da2c5a15

See more details on using hashes here.

File details

Details for the file langchain_opengradient-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_opengradient-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 64b75c2e9c718f1beaabf46119d3a2cb86be2ecdf4d670a274efd634e972ba07
MD5 249ca985f00792915b184d9dc2c0b973
BLAKE2b-256 2ec854780dfe3ea2683d2447d1b15642af596f9054df638a3626ae5fb6bc6605

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page