Skip to main content

Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python

Project description

Linear Models

Metric
Latest Release PyPI version
Continuous Integration Build Status
Coverage codecov
Code Quality Codacy Badge
Citation DOI

Linear (regression) models for Python. Extends statsmodels with Panel regression, instrumental variable estimators, system estimators and models for estimating asset prices:

  • Panel models:

    • Fixed effects (maximum two-way)
    • First difference regression
    • Between estimator for panel data
    • Pooled regression for panel data
    • Fama-MacBeth estimation of panel models
  • High-dimensional Regresssion:

    • Absorbing Least Squares
  • Instrumental Variable estimators

    • Two-stage Least Squares
    • Limited Information Maximum Likelihood
    • k-class Estimators
    • Generalized Method of Moments, also with continuously updating
  • Factor Asset Pricing Models:

    • 2- and 3-step estimation
    • Time-series estimation
    • GMM estimation
  • System Regression:

    • Seemingly Unrelated Regression (SUR/SURE)
    • Three-Stage Least Squares (3SLS)
    • Generalized Method of Moments (GMM) System Estimation

Designed to work equally well with NumPy, Pandas or xarray data.

Panel models

Like statsmodels to include, supports formulas for specifying models. For example, the classic Grunfeld regression can be specified

import numpy as np
from statsmodels.datasets import grunfeld
data = grunfeld.load_pandas().data
data.year = data.year.astype(np.int64)
# MultiIndex, entity - time
data = data.set_index(['firm','year'])
from linearmodels import PanelOLS
mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
res = mod.fit(cov_type='clustered', cluster_entity=True)

Models can also be specified using the formula interface.

from linearmodels import PanelOLS
mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
res = mod.fit(cov_type='clustered', cluster_entity=True)

The formula interface for PanelOLS supports the special values EntityEffects and TimeEffects which add entity (fixed) and time effects, respectively.

Formula support comes from the formulaic package which is a replacement for patsy.

Instrumental Variable Models

IV regression models can be similarly specified.

import numpy as np
from linearmodels.iv import IV2SLS
from linearmodels.datasets import mroz
data = mroz.load()
mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)

The expressions in the [ ] indicate endogenous regressors (before ~) and the instruments.

Installing

The latest release can be installed using pip

pip install linearmodels

The main branch can be installed by cloning the repo and running setup

git clone https://github.com/bashtage/linearmodels
cd linearmodels
pip install .

Documentation

Stable Documentation is built on every tagged version using doctr. Development Documentation is automatically built on every successful build of main.

Plan and status

Should eventually add some useful linear model estimators such as panel regression. Currently only the single variable IV estimators are polished.

  • Linear Instrumental variable estimation - complete
  • Linear Panel model estimation - complete
  • Fama-MacBeth regression - complete
  • Linear Factor Asset Pricing - complete
  • System regression - complete
  • Linear IV Panel model estimation - not started
  • Dynamic Panel model estimation - not started

Requirements

Running

  • Python 3.10+
  • NumPy (1.22+)
  • SciPy (1.8+)
  • pandas (1.4+)
  • statsmodels (0.13.1+)
  • formulaic (1.0.0+)
  • xarray (0.16+, optional)
  • Cython (3.0.10+, optional)

Testing

  • py.test

Documentation

  • sphinx
  • sphinx-immaterial
  • nbsphinx
  • nbconvert
  • nbformat
  • ipython
  • jupyter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linearmodels-7.0.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

linearmodels-7.0-cp314-cp314-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.14Windows x86-64

linearmodels-7.0-cp314-cp314-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

linearmodels-7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

linearmodels-7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

linearmodels-7.0-cp314-cp314-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

linearmodels-7.0-cp314-cp314-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

linearmodels-7.0-cp313-cp313-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13Windows x86-64

linearmodels-7.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

linearmodels-7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

linearmodels-7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

linearmodels-7.0-cp313-cp313-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

linearmodels-7.0-cp313-cp313-macosx_10_13_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

linearmodels-7.0-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86-64

linearmodels-7.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

linearmodels-7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

linearmodels-7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

linearmodels-7.0-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

linearmodels-7.0-cp312-cp312-macosx_10_13_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

linearmodels-7.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

linearmodels-7.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

linearmodels-7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

linearmodels-7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

linearmodels-7.0-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

linearmodels-7.0-cp311-cp311-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

linearmodels-7.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10Windows x86-64

linearmodels-7.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

linearmodels-7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

linearmodels-7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

linearmodels-7.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

linearmodels-7.0-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file linearmodels-7.0.tar.gz.

File metadata

  • Download URL: linearmodels-7.0.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.9

File hashes

Hashes for linearmodels-7.0.tar.gz
Algorithm Hash digest
SHA256 15b50271068d8ad7ef58924fea6ca3fced055f8439f9e17d2ce62ba91c64ed24
MD5 fc435d4fccbad8d44af04d32f8e17ce2
BLAKE2b-256 903f9ee976744bdbc82ee5d56ef42ab5f552e32c8770d3bd3e4c6fd1a06c168f

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: linearmodels-7.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for linearmodels-7.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 5eb43b16fe1125992e5d1d0901397d915e749d72697790f61c71853ba874d0b9
MD5 dec458c660d042006416faefd068518e
BLAKE2b-256 23144342aa8759b60d4ca644442bb145004ec95ff0b1a834a5b4a6c71a50178d

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 57bdfa3dae6da805973f9e38d539bf8a5a3e5fe5f30e6398ded7dc2778d86aba
MD5 5a75aa2c58d7de770d4f07a881184226
BLAKE2b-256 7eabc7cb603e2fbb32bb62cde8a1c51b3adbdac6b518d7a1b22ffae2d60c9282

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7690675f5c0aeaa15b375d697b9b0dc50f4390dff09bda3b5a7f335168fd5042
MD5 a7bccca7b223b0a2be8e73fc84aa5197
BLAKE2b-256 c53b26cde43d1555d6d21d3536a309aacde362fdfc24aa2c8c65662ac9fd329a

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a4551c46550917246377b1e1bbf3bd1f79bc5381a88a3391b35743677291295b
MD5 1a9947730e7d56188b5f9f24386cc68a
BLAKE2b-256 5f91a1c29abc4fb1b971234611b6a65da0e60cb1ccd912a99417ecda29c02773

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e8d0a6c5e8643d48f17dcea4e08fb7852f593625aac9270dc21b551a389284f
MD5 deaa3121c945721e2c249909eb85553b
BLAKE2b-256 88938288e10a019a77a54146d1f6d948ec74173448d07ee4890710b25ab9009d

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5fd24d35a81e8533a3b830a569df8a9b887b58e5e093d6ce7e50e50e4d9376a7
MD5 d6a3b345820b03f7be7e9b5598b9160c
BLAKE2b-256 9275fe8964b7a11e1884a2e9f454360980d4e682707c58ccc7eeab4f45651316

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: linearmodels-7.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for linearmodels-7.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4dc1250b53cf5b049dfe4ba30e777a21ba6260418cf5f5315bf2b4452bd8031f
MD5 c30d94bfeefc1d9b21dd2fc119a6cee5
BLAKE2b-256 e60423d14fe08186171d71667ecd29571b1a216cc481ea968e94a05e10ffd27a

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 33980994b140c45681260bb95c324310e4ecf89c40bb865e4a073a0f737e7ff7
MD5 5944047036b3fe2cea3229e805ac1742
BLAKE2b-256 060d47f5d9650c45089e7c8666b76658858d7f76d6aec3792f746b175c9c3fc0

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 463f009abffaf060c6d5fdf67b057b1bc4a3008e71e37e3eb8501c1ba2703187
MD5 0287e7ae70f1bdcae9ab4ea3afdb9d23
BLAKE2b-256 cf03266ff10e73dc31afae4f9c60834dcc7118946adcc6b2355d0457dc1c98ab

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f37c3d9262cea593db4a0a73f32a18bcdd952bf8174bb4554d9510d8fcf2cd8b
MD5 b5dbab8dcced082d43dd88ffd923d997
BLAKE2b-256 79f3a33de3654e0971e8dbb8bf0812b1b951a878e9a706f8c94076bfbe256dcd

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b5179d07aa6738cc39105645b14edf22617e3a4eebc00285cdb11f111cfba65
MD5 579e0652a80b496b5a5fe581ec2ccb1e
BLAKE2b-256 7f3efc7284d36ce737d635a6d0fbb38aa69f18505e9711770133bb97ff0494b4

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f121a3e4cc6d399818e191fb9f4c463fe2948b06f37c49a59bb6e2848184cefd
MD5 e90b5b53ee93a45600971de05b9b4be9
BLAKE2b-256 fdc0c570291d17326d52d43a81acd42f76d73efb02e48429d469f03e2dc54214

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: linearmodels-7.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for linearmodels-7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 576783261a73783119b7f6592a40a946a4e3a280b2d251998863dadec222a3ca
MD5 dac42d79de599dbe49b4d70bf7681606
BLAKE2b-256 6d6a317ae07dd23b984a30d12de359f7a7b831bd1477b75f965a66df1fd1758f

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 20f4aa50b28588dc1816c9a1717d614afc8231648a6a065a1795001b3a784681
MD5 76a115a0435b8dc7b5ccf9b3ed0fdbb8
BLAKE2b-256 aca39dd097fb015fef775b410b0335553e0422a28c58747052d71354be10c858

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f38b1934cf5bff8675ea9771831131d360c99926c37d0f25a3d969173c4663b6
MD5 537edcca622709558ffa5bdc184ac57f
BLAKE2b-256 57c3b98d12f8534ac28bc4aa3ea39dfb4f294635ecd4ba0dedebf55faa0a0f96

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 25cb8343232208b9b8e746774799646eba2ebba6cbc2f2c7e069dd4f9ee9ca69
MD5 77dddad3926ee4a12509c613d8a1ba23
BLAKE2b-256 c9b6702b8e7bc532918b42dd59d65380cf4807b799bf5970250f2568cab7545a

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d891d4c4a9876c8f96cd84be50a54aa0b4e38386afca39d0f634b83f2c0e79eb
MD5 5bd0769bf67510a842548b958790a89b
BLAKE2b-256 b6e175fc94877b1f2341830f07868d56775480adf6541c2ea65744aefce4ce5b

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 90f92093ac8c10ef595f8449771e4361354b6c6c1290496ec9e7bf3c907d7388
MD5 9ddf4bc77e39ff1e5d4308f694f525c4
BLAKE2b-256 a581ebf54a4c681d6879d954ef9a5247de347fb53d2bbdb4d772af7eb42c6976

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: linearmodels-7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for linearmodels-7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3c32e36af4ffe00a59b85c2eb301f32cdf7bfb9745e6727d70cd5baca476b19b
MD5 201181513eece9572814ae948ba7e09f
BLAKE2b-256 dfee71bb96ead3b815bcdf05800abd5d4d183d362d3eb4b7b416190b288f946f

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f448ed731eee2ce1a663923d643ae58ba0a78d25c66bf95a6a62cc7c08bc254b
MD5 30283469da6f72ffcbbb777f42b73691
BLAKE2b-256 b36b634fc89029491832197481d9100ea6b851f6c4b9e805ffc5efbab4792231

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8ef9fa976b1433b9ef982c469715d4543130606ad08b3bb019825073f38e11a2
MD5 ef2c177a0934b25993c9a8f308bf3ee6
BLAKE2b-256 8e986b5a0808fb2245b23be49228f67dd59e35aff86f34c0b48b8d2bee5fc762

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 31fd2214d48dc1f43d9959d3f70d97f9f08a05dda1137e5a78f2beeda8a8e927
MD5 01dbfdceef8c19fac99bb3934a4936a3
BLAKE2b-256 f77dfb83a3c94e41b9b9852eef8e713f033c4cef9226a8c9f53fc8164acd4f7b

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09d3952db3105f726ca174d05ce81ea6827e1d1a21f18e56a2b351d95f26c408
MD5 fec09a10411ab95f3ae6e2252a16d411
BLAKE2b-256 a8c6cbc75490a552faba7e06d18f55a24fdae9162b8b99f187e4b3dde4e9cd79

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfea8f069f39cbfe8a62ee9890c0c097a73999a6f5b8092882f702724f1570f0
MD5 7e0b42813e04887720cc5f2ea781eb2a
BLAKE2b-256 920159390c1f5279f158fe293d7be5f464aa424f2347d23d75ec27fd0e24244c

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: linearmodels-7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.8

File hashes

Hashes for linearmodels-7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7022d7d3108ed3315317cb72d5f802f7ba269817c0d84ae7f5a1c2b8fe93cfd6
MD5 f284c8218d57fda35d8633cc7d6c9978
BLAKE2b-256 ffb407bfbe879d029d42dbcf9a66693bc21ed702dc0368d01394ceefeb10c1ce

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b09d8e972f4327f10237de404ed479ea93c7ceadd46abbb2df733440456072cb
MD5 4a7bb3bd77d24a68ff7b861d725da5d4
BLAKE2b-256 110d71379aa7a9542f275469b5f222943214e8d06f7dc44e9db626e03faf34f3

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f1dea0b9ccc4eb866a6bed4d0049c4920777b38b887fd608865622767ac94e6f
MD5 69a0d4306dd9e201de140b5dd19d3672
BLAKE2b-256 8c96f1d6dc77bbda18f62eb3a0bdebe7bf97377ade69bd47d88e2f8c77781c63

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c57c8b0ab9458529d0f5e7bb44234a5e7a1a3c556043376ff8234e501d4156a4
MD5 d93693729be0d0f8baa3ea07226661f9
BLAKE2b-256 c3177043d3f15b07bca6442201fbef06f9d780e29e3951a95949799e67abdcb3

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a9db4a86c55d2dcabce2a7bdca81a2752e533fe347ce551d462f1d41b19b4d7
MD5 030f5d0c8509ee10acc44e6374821775
BLAKE2b-256 5e97b6fd0748d8eaf0e8211a7d50efd21d59aaa5fafaaa01e224047e084ef3d3

See more details on using hashes here.

File details

Details for the file linearmodels-7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca7a338c7108d6ddf880396e3c391207fa189f639e508282c05926cd5c67c963
MD5 ea13b1eaf82c3b9fa0f95e2907ff9fe4
BLAKE2b-256 1539ccacf8ffe8c7cf9042392ed39ba8f8b062305ac8c7eb5358395f89d0d506

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page