Skip to main content

Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python

Project description

Linear Models

Metric
Latest Release PyPI version
Continuous Integration Build Status
Build status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Code Quality: Python
Total Alerts
Citation DOI

Linear (regression) models for Python. Extends statsmodels with Panel regression, instrumental variable estimators, system estimators and models for estimating asset prices:

  • Panel models:

    • Fixed effects (maximum two-way)
    • First difference regression
    • Between estimator for panel data
    • Pooled regression for panel data
    • Fama-MacBeth estimation of panel models
  • High-dimensional Regresssion:

    • Absorbing Least Squares
  • Instrumental Variable estimators

    • Two-stage Least Squares
    • Limited Information Maximum Likelihood
    • k-class Estimators
    • Generalized Method of Moments, also with continuously updating
  • Factor Asset Pricing Models:

    • 2- and 3-step estimation
    • Time-series estimation
    • GMM estimation
  • System Regression:

    • Seemingly Unrelated Regression (SUR/SURE)
    • Three-Stage Least Squares (3SLS)
    • Generalized Method of Moments (GMM) System Estimation

Designed to work equally well with NumPy, Pandas or xarray data.

Panel models

Like statsmodels to include, supports formulas for specifying models. For example, the classic Grunfeld regression can be specified

import numpy as np
from statsmodels.datasets import grunfeld
data = grunfeld.load_pandas().data
data.year = data.year.astype(np.int64)
# MultiIndex, entity - time
data = data.set_index(['firm','year'])
from linearmodels import PanelOLS
mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
res = mod.fit(cov_type='clustered', cluster_entity=True)

Models can also be specified using the formula interface.

from linearmodels import PanelOLS
mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
res = mod.fit(cov_type='clustered', cluster_entity=True)

The formula interface for PanelOLS supports the special values EntityEffects and TimeEffects which add entity (fixed) and time effects, respectively.

Formula support comes from the formulaic package which is a replacement for patsy.

Instrumental Variable Models

IV regression models can be similarly specified.

import numpy as np
from linearmodels.iv import IV2SLS
from linearmodels.datasets import mroz
data = mroz.load()
mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)

The expressions in the [ ] indicate endogenous regressors (before ~) and the instruments.

Installing

The latest release can be installed using pip

pip install linearmodels

The main branch can be installed by cloning the repo and running setup

git clone https://github.com/bashtage/linearmodels
cd linearmodels
python setup.py install

Documentation

Stable Documentation is built on every tagged version using doctr. Development Documentation is automatically built on every successful build of main.

Plan and status

Should eventually add some useful linear model estimators such as panel regression. Currently only the single variable IV estimators are polished.

  • Linear Instrumental variable estimation - complete
  • Linear Panel model estimation - complete
  • Fama-MacBeth regression - complete
  • Linear Factor Asset Pricing - complete
  • System regression - complete
  • Linear IV Panel model estimation - not started
  • Dynamic Panel model estimation - not started

Requirements

Running

With the exception of Python 3 (3.7+ tested), which is a hard requirement, the others are the version that are being used in the test environment. It is possible that older versions work.

  • Python 3.7+
  • NumPy (1.15+)
  • SciPy (1.3+)
  • pandas (0.25+)
  • statsmodels (0.11+)
  • xarray (0.13+, optional)
  • Cython (0.29.21+, optional)

Testing

  • py.test

Documentation

  • sphinx
  • sphinx-material
  • nbsphinx
  • nbconvert
  • nbformat
  • ipython
  • jupyter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linearmodels-4.25.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

linearmodels-4.25-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10Windows x86-64

linearmodels-4.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

linearmodels-4.25-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

linearmodels-4.25-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

linearmodels-4.25-cp310-cp310-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

linearmodels-4.25-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9Windows x86-64

linearmodels-4.25-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9Windows x86

linearmodels-4.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

linearmodels-4.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

linearmodels-4.25-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

linearmodels-4.25-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

linearmodels-4.25-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8Windows x86-64

linearmodels-4.25-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8Windows x86

linearmodels-4.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

linearmodels-4.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

linearmodels-4.25-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

linearmodels-4.25-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

linearmodels-4.25-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

linearmodels-4.25-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7mWindows x86

linearmodels-4.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

linearmodels-4.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

linearmodels-4.25-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file linearmodels-4.25.tar.gz.

File metadata

  • Download URL: linearmodels-4.25.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.26.0 setuptools/58.0.4 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for linearmodels-4.25.tar.gz
Algorithm Hash digest
SHA256 a73e94195f486f74be6176809a515bb498b5371d8acb9e4ae6f0e59a7c28210a
MD5 59fac1bf46759df751dbc2b646b1ae2c
BLAKE2b-256 b9ac2a73d3fa1d858aa623104d23d73528eb9f06f5f9b219cd11660bff91cac5

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c0aec5de380c4daf0596bb3be647a8cc8d0081c06715465df7a87efced08014e
MD5 a390e3a917369fb27ff2827f042fa676
BLAKE2b-256 6b69734cbb2caff8faba69908bf50a25f5b03e3a6aeec74c3143fc27091ef66a

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 728d82fac702f65cc128742145b3702428b6aed5283450365ec5110f42e883dd
MD5 09ec881201c6aa5dc98bd8dd5802424e
BLAKE2b-256 3b556cf14391542c4b3456fd1f434b1e7b1b052ae87603f691f2b06222020184

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e107d3d97819cdc4bfe64c85870e0ed655f2e1bd04911e22127dee0e3fab8d2
MD5 7b5435c4a80e5b9c22420e09710529b1
BLAKE2b-256 93e9fd0992ecca7eac23bf2265f604509c66acb8401a90315b2ba41122e91b46

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1b2e7e4e27b12e9d5ec4e2de41e9aeaa685405bc37beaff0f080a2ad3e24f61
MD5 e0f9abe49368a5b6f960bc5e461cd15d
BLAKE2b-256 2532b3c6cf90bee08d37ac00d326d1f3cb604ab3eb8041856563925a08ae2454

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: linearmodels-4.25-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e8d3b34c62357701b60d043356563c247096ad79b8b95ac9bbafb1820a455f48
MD5 ce1cc7f12a3085d2a266762ca4618911
BLAKE2b-256 fc686e6d93cb41699bd63bb5a639624226dec4b6ea8438dc300cb618213ad5c8

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for linearmodels-4.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 19f8cb6237b61badb687a4a020527552a70e077cf1b303959c33faeb8cdde285
MD5 3494734c0f533fd33c46058e4e3cccbe
BLAKE2b-256 27b1cecd33dc51e99caf6c7212d24f8d01aee09f051c11fbdbaaa502128b7cb6

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-win32.whl.

File metadata

  • Download URL: linearmodels-4.25-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.0

File hashes

Hashes for linearmodels-4.25-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 061f2970191fcee284f600d5cc84a556a411729494325af8c557047ab733ae46
MD5 de3a84f68d649a58a81fa1639944ca0b
BLAKE2b-256 35bbd5dd74ec3123c195b806871769f14153f369382228e193393dfd9dd0e595

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5a1b691e840189a2ed17796a806960166e30e86e6970c80e60fe10762456005
MD5 54ad57eb7a2bfe39d737768f405daae0
BLAKE2b-256 d713209145758b522b234a2bdd9f9a5aee63f566945e46dd23d56efcc4f2d844

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4abd59e3dda544807676d94ba1ea2ceba87624ab30491ea561430f31379229bc
MD5 72dde54749fdd2886fd811cfa4802895
BLAKE2b-256 823a02d8c1a86dec6abbf3bf5bb5a8484124b941c4e9b1124c6b3f27c33a27db

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11b3f66bdf17434b04be916f16ddb319bf8dae54b89b8c268cb37a8ad7b0f4ee
MD5 b5969dd85dd0292ba502a80ae58299a5
BLAKE2b-256 ed7d9ca30aa4d602f75886c3676c6abc4448d4bc93c6c1359f46899811b0d237

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for linearmodels-4.25-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bd3ddc0753d29fcd26ff80d87957904f7d91c3f7d898c8839b13a226ee5fede
MD5 4c75c2fecf5fbc99b6a8f43d0cf49d8e
BLAKE2b-256 c7ab4a43ff4adfece6b8f452d8037fc56ce409a8f8166fe629b10fa9db7bbae4

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for linearmodels-4.25-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4d5d401d1c2c9b8c2e8fd2dd8b064e513bf4cb0d6a30b9198f33f67163cbc7d8
MD5 9bb45dd944a159534058272b74f12e8d
BLAKE2b-256 565eadae7dc29a3cdf9cdfb8eb9ced55d80109068678aeec3610f360f44ecebc

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-win32.whl.

File metadata

  • Download URL: linearmodels-4.25-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for linearmodels-4.25-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cced735e5c645902c3c2003826d75ff04dd5caa60096918e8f7f4fc0eb79ed31
MD5 62d562d1c2e61b6f46b532ff02e74ec0
BLAKE2b-256 1d6fcf2eb1c9b0e55125fd6e0409c32686404b74e2f99f15ef5f4f191df493ef

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c24f4aa2f44bf9e04606e15851b8874b2c8097f533c47bf11d6dab4954ecc6db
MD5 50b98d43eebc7694f26c107a1904c54b
BLAKE2b-256 3fa0a9041f3c748c604c42a31ab2df503bfc49aa23bd1d036bca89afe175504b

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6843e0a8971d4d0539f22967ebf7dc9b381e55f087b6ee7bb32ad7ee728c91a7
MD5 9be1b1dd0d966f5310e929c7c770022a
BLAKE2b-256 d8bb5ba717ba3f58438f85fc3e9be9d35aa73368d8edc9f3c0fe7cde409e7b03

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for linearmodels-4.25-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e989cc12320e4cc599f3ceb83e8fa16e27af2584c3f76020bc56c20f76866839
MD5 4207c71d203ca6a1c3eaf00a61e088da
BLAKE2b-256 7978b4734f6e6528f70e1325fab5f994c874a44323ba2bbbb1753f8c96a2f37f

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for linearmodels-4.25-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 397201c401f1d21bbfa9b2f4c44694c2f8c557d69271c244f43ac2ec5c6f2376
MD5 a4e0f8c1f445d241bed60b9823af8848
BLAKE2b-256 3bd3bfc82db69a5a0d5a23bf0a14f1d4256811917a99dda9a5b3e84624d4c934

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.5

File hashes

Hashes for linearmodels-4.25-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f9fcb1eaaaf268ffcffbf4c2333bc9634d7a9ecf2ced0b5222bab6a8491d9fc6
MD5 3fff01010a479434cefd7b8a21f52db7
BLAKE2b-256 699f60ade1474e7a93a073f32ff16a9eace7c72f0f9ce574c2ed68e969d45ea6

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp37-cp37m-win32.whl.

File metadata

  • Download URL: linearmodels-4.25-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.5

File hashes

Hashes for linearmodels-4.25-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ab9cb6a6fcad05bc5e790341c321713232883a8757aab4c7ce038a0a1af55728
MD5 45b63b8c5f56ade09181b4da4a7ba7e2
BLAKE2b-256 b95523aa4e8f35a1f02e7aa4b98202a6dd84782e930cf5269c3cec2b8941374a

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 339f01a68e504db1cccb4be9d4167c38c92ea5700cd3eba03ad0352d869c15eb
MD5 3f41885e7c330434333877bd7f1c30c5
BLAKE2b-256 e05d6793b3e5cfa9f6f73a1b74f172ae5a087b2fd69e616ca3f434a1a5a33928

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for linearmodels-4.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f55f68eb675f863f80860526143451f516d9b77c580c0afb6c86f8bf7292da86
MD5 f841e75ab3f04909d9bbba71d221ffee
BLAKE2b-256 a49f7b9e2ff037246ce2832b370ec8a9a8d94ab68c60175f413ec7381796d09a

See more details on using hashes here.

File details

Details for the file linearmodels-4.25-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: linearmodels-4.25-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for linearmodels-4.25-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db4c313127f3307a7c174ee12d9306fbc8dbb8a585b55234ebfa435fa5dd9ee9
MD5 220526583bcc34a9f9d02682c91c2b4d
BLAKE2b-256 b1f8466683c1af0caa6e5b9ab1821e29c30960c79d9c2920136d2b838bc3f241

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page