Skip to main content

MAGIC

Project description

Latest PyPi version Latest CRAN version Travis CI Build Read the Docs Cell Publication DOI Twitter GitHub stars

Markov Affinity-based Graph Imputation of Cells (MAGIC) is an algorithm for denoising high-dimensional data most commonly applied to single-cell RNA sequencing data. MAGIC learns the manifold data, using the resultant graph to smooth the features and restore the structure of the data.

To see how MAGIC can be applied to single-cell RNA-seq, elucidating the epithelial-to-mesenchymal transition, read our publication in Cell.

David van Dijk, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. 2018. Cell.

For R and MATLAB implementations of MAGIC, see https://github.com/KrishnaswamyLab/MAGIC.

Magic reveals the interaction between Vimentin (VIM), Cadherin-1 (CDH1), and Zinc finger E-box-binding homeobox 1 (ZEB1, encoded by colors).

Magic reveals the interaction between Vimentin (VIM), Cadherin-1 (CDH1), and Zinc finger E-box-binding homeobox 1 (ZEB1, encoded by colors).

Installation

Installation with pip

To install with pip, run the following from a terminal:

pip install --user magic-impute

Installation from GitHub

To clone the repository and install manually, run the following from a terminal:

git clone git://github.com/KrishnaswamyLab/MAGIC.git
cd MAGIC/python
python setup.py install --user

Usage

Example data

The following code runs MAGIC on test data located in the MAGIC repository:

import magic
import pandas as pd
import matplotlib.pyplot as plt
X = pd.read_csv("MAGIC/data/test_data.csv")
magic_operator = magic.MAGIC()
X_magic = magic_operator.fit_transform(X, genes=['VIM', 'CDH1', 'ZEB1'])
plt.scatter(X_magic['VIM'], X_magic['CDH1'], c=X_magic['ZEB1'], s=1, cmap='inferno')
plt.show()
magic.plot.animate_magic(X, gene_x='VIM', gene_y='CDH1', gene_color='ZEB1', operator=magic_operator)

Interactive command line

We have included two tutorial notebooks on MAGIC usage and results visualization for single cell RNA-seq data.

EMT data notebook: http://nbviewer.jupyter.org/github/KrishnaswamyLab/magic/blob/master/python/tutorial_notebooks/emt_tutorial.ipynb

Bone Marrow data notebook: http://nbviewer.jupyter.org/github/KrishnaswamyLab/magic/blob/master/python/tutorial_notebooks/bonemarrow_tutorial.ipynb

Help

If you have any questions or require assistance using MAGIC, please contact us at https://krishnaswamylab.org/get-help.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for magic-impute, version 2.0.3
Filename, size File type Python version Upload date Hashes
Filename, size magic_impute-2.0.3-py3-none-any.whl (17.0 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size magic-impute-2.0.3.tar.gz (16.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page