Skip to main content

Python plotting package

Project description

PyPi Downloads NUMFocus

DiscourseBadge Gitter GitHubIssues GitTutorial

GitHubActions AzurePipelines AppVeyor Codecov LGTM

https://matplotlib.org/_static/logo2.svg

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Check out our home page for more information.

https://matplotlib.org/_static/readme_preview.png

Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, Python/IPython shells, web application servers, and various graphical user interface toolkits.

Install

For installation instructions and requirements, see the install documentation or installing.rst in the source.

Contribute

You’ve discovered a bug or something else you want to change - excellent!

You’ve worked out a way to fix it – even better!

You want to tell us about it – best of all!

Start at the contributing guide!

Contact

Discourse is the discussion forum for general questions and discussions and our recommended starting point.

Our active mailing lists (which are mirrored on Discourse) are:

Gitter is for coordinating development and asking questions directly related to contributing to matplotlib.

Citing Matplotlib

If Matplotlib contributes to a project that leads to publication, please acknowledge this by citing Matplotlib.

A ready-made citation entry is available.

Research notice

Please note that this repository is participating in a study into sustainability of open source projects. Data will be gathered about this repository for approximately the next 12 months, starting from June 2021.

Data collected will include number of contributors, number of PRs, time taken to close/merge these PRs, and issues closed.

For more information, please visit the informational page or download the participant information sheet.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matplotlib-3.6.0rc2.tar.gz (35.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

matplotlib-3.6.0rc2-pp39-pypy39_pp73-win_amd64.whl (7.2 MB view details)

Uploaded PyPyWindows x86-64

matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.4 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

matplotlib-3.6.0rc2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded PyPymacOS 10.12+ x86-64

matplotlib-3.6.0rc2-pp38-pypy38_pp73-win_amd64.whl (7.2 MB view details)

Uploaded PyPyWindows x86-64

matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.4 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

matplotlib-3.6.0rc2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded PyPymacOS 10.12+ x86-64

matplotlib-3.6.0rc2-cp311-cp311-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.11Windows x86-64

matplotlib-3.6.0rc2-cp311-cp311-win32.whl (7.1 MB view details)

Uploaded CPython 3.11Windows x86

matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

matplotlib-3.6.0rc2-cp311-cp311-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_universal2.whl (8.1 MB view details)

Uploaded CPython 3.11macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.0rc2-cp310-cp310-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.10Windows x86-64

matplotlib-3.6.0rc2-cp310-cp310-win32.whl (7.1 MB view details)

Uploaded CPython 3.10Windows x86

matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

matplotlib-3.6.0rc2-cp310-cp310-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_universal2.whl (8.1 MB view details)

Uploaded CPython 3.10macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.0rc2-cp39-cp39-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.9Windows x86-64

matplotlib-3.6.0rc2-cp39-cp39-win32.whl (7.1 MB view details)

Uploaded CPython 3.9Windows x86

matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

matplotlib-3.6.0rc2-cp39-cp39-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_universal2.whl (8.1 MB view details)

Uploaded CPython 3.9macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.0rc2-cp38-cp38-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.8Windows x86-64

matplotlib-3.6.0rc2-cp38-cp38-win32.whl (7.1 MB view details)

Uploaded CPython 3.8Windows x86

matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (9.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

matplotlib-3.6.0rc2-cp38-cp38-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.8macOS 10.12+ x86-64

matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_universal2.whl (8.1 MB view details)

Uploaded CPython 3.8macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file matplotlib-3.6.0rc2.tar.gz.

File metadata

  • Download URL: matplotlib-3.6.0rc2.tar.gz
  • Upload date:
  • Size: 35.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.0rc2.tar.gz
Algorithm Hash digest
SHA256 52c799bc8755947bfdebfd586325077a5efac4f074d2145adb84dc9c0c86b2d9
MD5 3ae63afcb8c2651e4814438ed1987684
BLAKE2b-256 bf70d68ca70409f11f4b998997708b5cd74524f5c8b531ab3d6c60b24bd26ad8

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5126cd723d3f2c6d1318634fb2a34ce8c01dfb6eae164723e153f930cbeec2d6
MD5 e510a4af68b74c3f4a183258f4b5e095
BLAKE2b-256 9f22e7e891e39ff87014d555c9616441ba9f23633bdaab799cac23eccb5a0602

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbd215db0260da6a3df6bba2e09ea6790ed79b02f0f493a22fea2f680d9f03ff
MD5 cb1215d8c50bd366c64f8b70125de7a1
BLAKE2b-256 14ee7b83fe9837927505737bbe5a273e62d137999d35329e225c15ef46b75041

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6096ada6aad59f9db42760c9c047792f46a4f984d77a9f0a6ec41a06d64ea879
MD5 8984e9fea2ef6a54990d82a6d6415263
BLAKE2b-256 85fde6c854a9adb5cbf3ab4fc4b05f30d3d0f38903ad4b75dd1125f6d98a34b2

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2d89ea5c58abd06295a62c114c5c34cbaed8677672c3489b08d1281cd85735d3
MD5 daaf15aa3a47854f07dbe51384a2bc44
BLAKE2b-256 43ba902796285071d808e695a968815168324aa55a6405d963515788596cb5fd

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8470ba1d07bffd4f40cdcd7dfeb7f5235fc14f9debe43432c8ee7c2864af6ecb
MD5 98429de0f95f7ac85808ae31b44ad466
BLAKE2b-256 2797564ea1c9b856bc09df6f58f969369045093309e38e89ba4ca48a6ca11e53

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eafc7a21c31875240a2c8ea82d99858c99f9c35b3d17b6a1485c471c5a5bd0c6
MD5 6a77634156269dd5e57007750179515d
BLAKE2b-256 9534c82a3d4ef84881e53459412a7c8e9c2ce5ee1d118dc8e801e21bfcf85878

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f7500171ecbfa43f18ad934ab2781b35a722ee58f81efa1af50a2ed76da23d47
MD5 10cfeaac23e763cb8301df02dc765062
BLAKE2b-256 49cfe25ff1bbc43609bdcbfb8e383be6ea97ca3ddec32c3efde2a8200f2d6a27

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 21cdded9a76a61d5352df0a6963dbc4510b0042ce4e3e8ed654ef5a63d978a19
MD5 a931579859620bd851c42460d6451098
BLAKE2b-256 1155a550122a48a7d843cb989b0837da66723a1c88f4afc6e671065c111d50b5

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6d93df35667d09de71f3a8fb8205897798cc3170ef50b26eb72cf389e824ee33
MD5 441c8dd5529981bf517763900cd10b7b
BLAKE2b-256 ca5cba728a86eff39f22696d2c5548782cd05727457e13b7766690dea79a9b8e

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.0rc2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b9330bfa5d2547f3a790b9e129ae8484700e0207aa582a2145815b3ae91b5729
MD5 7240cb57e8602df710db0e59c0db46ab
BLAKE2b-256 65610234d14c1286db0a7eb7750db71ff1f4053896b37aba4ee4f6919b6c821f

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23d3329a574a44f161c5392301ec69b2579ad3b0c8a9024ceca7d967fff76057
MD5 10b59a81c0bd472de4e637317a4e1f6e
BLAKE2b-256 bf55d45f30d11badd886e82931ea089f54d4df569b9d90575c37dedf7374dab0

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36ad2d5717d759d0c68959d170a0d6504f97e5f986c77aa62bd17f8386e7c9e0
MD5 a9b80bd7a22bb08852390758a9352670
BLAKE2b-256 4cc8f746b82380bc1abaaea71ffbb3e80ec3e2ecb8f427cfb1c5c3d0181ca06a

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40a8c8a75f4511df6a0f70e5319474096772ee3bfedde4a3c362e8f970b33a36
MD5 ad149a1c99acb5f67f13c43ff940f28b
BLAKE2b-256 1e8c468214c724044e1126986962e979089d146450538fd9672e90c1b5bfe294

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 332be602f2e2072ecad8ef1ab844c981573188a04899cdbbc534a9dcc2298378
MD5 c02766c591f3e2684e198e894dd588bb
BLAKE2b-256 fc6b962af686f6a08a7f43ccbada39af499e2c5687ac433fa143434f967b2eed

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8f1d5989f5ed53d899f52ad3ad538f043a8f00d7d10f4049093fdaee85a91adb
MD5 d90913e4b6b83ff9efe85ba4d73850e8
BLAKE2b-256 7444039f5e9ba12d37217b37980fca13c4646179c8f529d19d59c29c8df284c1

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 b693ef8ec48d2e84ba187fa7a0a1dea5d91e5f5b7b6970ecca06ee55aceda5b2
MD5 6945c75026a15465b0fcf84bdca2a1b1
BLAKE2b-256 0d296355342c9b6f5da2f1d0a9543f4a7c72cb1dd80db1efa7299b496a79c252

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7518323e0ead6a38b251515b809acb4837563cd182b2eb197db2c07c701fa21
MD5 d48c299235802628d20e5d4ca20b75e7
BLAKE2b-256 c22cc90247865315e00548031fcefabb70ef7d46116341a60050baef319eee84

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.0rc2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b9ff910dfe3d8f1d5fda5c7188c940de158029365962edb55eb3084321a4f71d
MD5 f798c0b53a473faeff6d97668b465cdc
BLAKE2b-256 e099021d2c108b05566559f4118fb5b197f0c46c92197d9e16b526412ca80e23

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38fc4aea29adea5fba5e6b13a992a6e9de27462225470fc24b6937b899bc0583
MD5 53e4dc4326ffa61eb93fb87302833b7d
BLAKE2b-256 98ff5f19ec1871266567d7bd360cb790704cfdcbc77b3b2dbf58e2a5a63ffc1c

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a69810a21676f09fdb86e3d7f42c9bdf655aa6598f5a7b8835e86a4feff0e14d
MD5 117c819c820c5298d9b3d16d4a2a37df
BLAKE2b-256 244cae3c89c36b0b366629f31f92e5ec365abd142207f21186ade6f38a898994

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b8654af58c81b71cf24dc72829994d8c71ad549039ecf174bbe5ca54943f5df
MD5 bb9c1a875f1d6ed8d42357e1e4b90e51
BLAKE2b-256 052732abf20acbd3f80aa4f2925ecfbc91a19469df8d4abbda7c75099eeca5d1

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c19adc2f8d48114fc3d586d476877375e30f1229c24c9a81c2a451636f30a63
MD5 61e942e8164f48d68be56b8c2a88454b
BLAKE2b-256 4a1d6e90c93df1aee834f31e56f631643242faab4d2dfb01bd284fb5313c0f06

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 61f99ecd2d56817435eeb44bbf2c61bf821d8f6c1adeb9ddb4af14b191930d7a
MD5 71afdfb632686b8b670c608d6037615f
BLAKE2b-256 aaed3576936c74cc2ed14c773a7d562fa1da3f7e91b8c8c09f25fe0c41d50f19

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 5a0c627557d188b4cc650ca2cd92fa7519255dfb88538f8b56124b5ffb9f1d19
MD5 cfd7a74a4a56a4a1e6d0c33f8f1f398e
BLAKE2b-256 b453b04ddfd57fbd16ff639e0f89a5b42cea5b720286ccc8029df9865212d0a5

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 efbfff89865199233adac644729e2ab83c1c8efaef7dcb151e4500149464d402
MD5 e51446e34efbe1a75dccf22fcd739d69
BLAKE2b-256 63f12afcc8b93c91f88bb8ca59ae1ef9ae5dfc6971dff5d2ca8c6857d0c0d156

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.0rc2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 564dd8fdc1824f6eb654adacc063a6d59aa182fb4a336ebb616ece5787f78546
MD5 18197d7df3256492b3698348d6d67ea5
BLAKE2b-256 dcf8cee543073d645e4ed7557da6f6fe1790dbc183d221828334644d5554c470

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c44a30268ede193a137da083ed5bf01601d068042bce5c86814234c791ce0495
MD5 b63ec54f3f93a32b07166b7fb279c5e0
BLAKE2b-256 b907c2d9c9b9355e9286890d9bd66f7f56796d7f6c4105bdaf5c366556fef966

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc36fb033bbdbb12edd6ce3719c66408a5fea636fe35c158034ca8c31b8be730
MD5 877a6fa841044648e7f5531d22aa7542
BLAKE2b-256 0d571b410f971ca44599bd01034b6b9d2fcaef6e1d5e92db4dafb7e272616d73

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdf80f7d629af2f4734e9af333edf8a067c90d8ee844616ddd887fa0fd8f0c5b
MD5 0a10fa06ee3afb44a23496bfe0107702
BLAKE2b-256 d6f86eb2f9257fabf2387f9afa4e3072ab1aa33ba4835357dfd8a27b575c2493

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cac0ed7bbcacbf0f57da69c0597bf058925ce575095f3bd16b0ae80d148d0269
MD5 ef6d512047cb90fce4713d0fe7057c11
BLAKE2b-256 1e47de57f6ad4807fe0b520047c004bdbf03de90be3b29c5ab38f7b383b02d20

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 92e04f898ae233044de10fe1821fe26c6e5c808ce8293f1ac07f5598fd6a7dd4
MD5 5a8b16df6fefefcbbfdcce000cacd5ab
BLAKE2b-256 41f06c03b8b3d37f6817cf95e2d2a2f6ed895eaf5d63ecfe1c37efb964e63ba5

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 216829ec2d42101cc6e8a6bdd58b0f07bab94ebf0718b70c4e78d9361f9e5729
MD5 7c80c807a16dd0819749cba563d17a76
BLAKE2b-256 9301c3bb84f1701cbf1bfa86d5c578baa65daf475591afdc42f14c672bf50b73

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 88a320b8f3a8c5f7bdb832b79b273ad30ebe2591020fc687ae598ff4d6204320
MD5 d7f77afd9126ab79241c80b5f8ddadd0
BLAKE2b-256 9fc6b5a20b913d4e108b911c6a68b67f5904319ac4823f95b1253336a41c0f8b

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.0rc2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 59c0872c957561117a79386d641869e8e3220ff80ffd5b00e165fe9bc236b24b
MD5 69f3699928453a0ad5072973cace35e3
BLAKE2b-256 6248f8ae0654d79ac307dd000571ab8b579c076c3bc9bb8b37c6e7a2545a460c

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df6b4a83e5c20e80090a8e441820ece2d1dc4905cf9204554ca98140bf47f9f0
MD5 e0a7183e041f92ce1a7c08689fdfe82c
BLAKE2b-256 4a01d99fa25679d532851585a26063d7dd0d9196acd0196c2ccbb37588081aee

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d06a9121b39316f1910b9a013c4b35c2883cb20117e839263331610257995412
MD5 20db9810bea9a345a8e1d4070519a769
BLAKE2b-256 834b43e030566ee312602c1329c4e55e60fe6e6c2707f06fd899c838e1ab03ed

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 10a3d2a93019f17a2d3b39c1184a4b29bc9d68d0828c076e56074b50ba9c06b0
MD5 446d134b889b2cc31943d5dc8ef2981c
BLAKE2b-256 d07aee8bb3f02529256691485b3ea74856beee18e81ddc27017cee0aa366c6de

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 104c3b6a5639094f0f49382c4d813bd6a439b1182ab8f7308981a010aa38ed01
MD5 01a9f729b2279b0cd0296d12481c99a7
BLAKE2b-256 057b934539ec97e7e4ff5190d8fc91f54cab01b9a0a8afa509146394db47590c

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cf49bcec880742ac698e99046674fc227994c07760be3f504b653cf3c7607673
MD5 9795ca70c5ec41d02d0e1a58273682c4
BLAKE2b-256 0d3c8a487f3a52f1deec21b7fc9fa88f68adc547154180acf7cc6c83a4756cbf

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.0rc2-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 e1c2f1e7b4254e88ed08678ac343ce57294764d5e5731c3f7256c253477fef05
MD5 4d7e7c0e132b03095c29282d10a2b327
BLAKE2b-256 ef8c2d6f0d8925b13f31508b5ae15e6fe8c0b182d306b44b79b8a693a9db17bf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page