Skip to main content

Python plotting package

Project description

PyPi Downloads NUMFocus

DiscourseBadge Gitter GitHubIssues GitTutorial

GitHubActions AzurePipelines AppVeyor Codecov LGTM

https://matplotlib.org/_static/logo2.svg

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Check out our home page for more information.

https://matplotlib.org/_static/readme_preview.png

Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, Python/IPython shells, web application servers, and various graphical user interface toolkits.

Install

For installation instructions and requirements, see the install documentation or installing.rst in the source.

Contribute

You’ve discovered a bug or something else you want to change - excellent!

You’ve worked out a way to fix it – even better!

You want to tell us about it – best of all!

Start at the contributing guide!

Contact

Discourse is the discussion forum for general questions and discussions and our recommended starting point.

Our active mailing lists (which are mirrored on Discourse) are:

Gitter is for coordinating development and asking questions directly related to contributing to matplotlib.

Citing Matplotlib

If Matplotlib contributes to a project that leads to publication, please acknowledge this by citing Matplotlib.

A ready-made citation entry is available.

Research notice

Please note that this repository is participating in a study into sustainability of open source projects. Data will be gathered about this repository for approximately the next 12 months, starting from June 2021.

Data collected will include number of contributors, number of PRs, time taken to close/merge these PRs, and issues closed.

For more information, please visit the informational page or download the participant information sheet.

Project details


Release history Release notifications | RSS feed

This version

3.6.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matplotlib-3.6.2.tar.gz (35.8 MB view details)

Uploaded Source

Built Distributions

matplotlib-3.6.2-pp39-pypy39_pp73-win_amd64.whl (7.2 MB view details)

Uploaded PyPy Windows x86-64

matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

matplotlib-3.6.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded PyPy macOS 10.12+ x86-64

matplotlib-3.6.2-pp38-pypy38_pp73-win_amd64.whl (7.2 MB view details)

Uploaded PyPy Windows x86-64

matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (7.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

matplotlib-3.6.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded PyPy macOS 10.12+ x86-64

matplotlib-3.6.2-cp311-cp311-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

matplotlib-3.6.2-cp311-cp311-win32.whl (7.1 MB view details)

Uploaded CPython 3.11 Windows x86

matplotlib-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

matplotlib-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

matplotlib-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

matplotlib-3.6.2-cp311-cp311-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

matplotlib-3.6.2-cp311-cp311-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

matplotlib-3.6.2-cp311-cp311-macosx_10_12_universal2.whl (8.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.2-cp310-cp310-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

matplotlib-3.6.2-cp310-cp310-win32.whl (7.1 MB view details)

Uploaded CPython 3.10 Windows x86

matplotlib-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

matplotlib-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

matplotlib-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

matplotlib-3.6.2-cp310-cp310-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

matplotlib-3.6.2-cp310-cp310-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

matplotlib-3.6.2-cp310-cp310-macosx_10_12_universal2.whl (8.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.2-cp39-cp39-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

matplotlib-3.6.2-cp39-cp39-win32.whl (7.1 MB view details)

Uploaded CPython 3.9 Windows x86

matplotlib-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

matplotlib-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (11.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

matplotlib-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

matplotlib-3.6.2-cp39-cp39-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

matplotlib-3.6.2-cp39-cp39-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

matplotlib-3.6.2-cp39-cp39-macosx_10_12_universal2.whl (8.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ universal2 (ARM64, x86-64)

matplotlib-3.6.2-cp38-cp38-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

matplotlib-3.6.2-cp38-cp38-win32.whl (7.1 MB view details)

Uploaded CPython 3.8 Windows x86

matplotlib-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

matplotlib-3.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

matplotlib-3.6.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

matplotlib-3.6.2-cp38-cp38-macosx_11_0_arm64.whl (7.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

matplotlib-3.6.2-cp38-cp38-macosx_10_12_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

matplotlib-3.6.2-cp38-cp38-macosx_10_12_universal2.whl (8.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ universal2 (ARM64, x86-64)

File details

Details for the file matplotlib-3.6.2.tar.gz.

File metadata

  • Download URL: matplotlib-3.6.2.tar.gz
  • Upload date:
  • Size: 35.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.2.tar.gz
Algorithm Hash digest
SHA256 b03fd10a1709d0101c054883b550f7c4c5e974f751e2680318759af005964990
MD5 77ca9a5b42152c9e2aeca1556f08f5ce
BLAKE2b-256 911ca48fd779287df3425c289cc2ff728980a5b355f15f4c3c40e1822770ba44

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4426c74761790bff46e3d906c14c7aab727543293eed5a924300a952e1a3a3c1
MD5 6f2a9b3a0eee55b4a6e5b92187ff7de9
BLAKE2b-256 802497c9bb03263d0812ebc17ad0608a4b9f2dda4d53ec21bd7534a932809f30

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0ca2c60d3966dfd6608f5f8c49b8a0fcf76de6654f2eda55fc6ef038d5a6f27
MD5 3b539c335fddee70916c5c48b828bc37
BLAKE2b-256 7a53018eac701f90f996ca1ebbc752e251297d2a23525cb95e7ad448698e493f

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e68be81cd8c22b029924b6d0ee814c337c0e706b8d88495a617319e5dd5441c3
MD5 e27ee450edecacfa7dcb25bcd30cc26e
BLAKE2b-256 17619900257024ffd56d2979df540e89e991153f4ba2112a6aa609839204bb52

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 54fa9fe27f5466b86126ff38123261188bed568c1019e4716af01f97a12fe812
MD5 fa6cfd1623bdb8858a017a6ee43afc65
BLAKE2b-256 e82dea68b71b43887b71e0fafe13093a5f2cbcd6ac212f9df36af26a54293c8a

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3cef89888a466228fc4e4b2954e740ce8e9afde7c4315fdd18caa1b8de58ca17
MD5 fe597b182b6b4e31ef8a0ccf1ac54e84
BLAKE2b-256 59dc6657c733621dbaa360287a5075ef8439aea6c961cbdd4b3db43c919623d7

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec9be0f4826cdb3a3a517509dcc5f87f370251b76362051ab59e42b6b765f8c4
MD5 5d652752b8df70e12ce97eb9f75b5fa7
BLAKE2b-256 7c9301ea7004154235caddd39d918cf79324f8af80b64a6c0f40bfa37bc09556

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0eda9d1b43f265da91fb9ae10d6922b5a986e2234470a524e6b18f14095b20d2
MD5 48d2ef3482a5f06822aba950cdd39fd3
BLAKE2b-256 5bae6d215739506446211e6f1ec608983d72658f4895a0ad7801b1ea61f17592

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1836f366272b1557a613f8265db220eb8dd883202bbbabe01bad5a4eadfd0c95
MD5 1a6ac31e674d6e9eca9dbc93c15a851b
BLAKE2b-256 ca0faff913721c24b10a19208f8f491db3aa99a3ff21009c5784164a228e5c7b

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 52c2bdd7cd0bf9d5ccdf9c1816568fd4ccd51a4d82419cc5480f548981b47dd0
MD5 71df8cda3d459d629803eaf8011d9d21
BLAKE2b-256 c59640374f9d6f28966ed5ba00c0442ded12cfa2ad17c0c4a4ccd26191d1ecde

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5024b8ed83d7f8809982d095d8ab0b179bebc07616a9713f86d30cf4944acb73
MD5 811bae8f4c4a77c3886d0fcd26139c9b
BLAKE2b-256 c2d55ff5b4ab16e08d80eb4c17ab8968739b209a83563ead659009c77bf028cb

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32d29c8c26362169c80c5718ce367e8c64f4dd068a424e7110df1dd2ed7bd428
MD5 83c9bd53e1f32d3a68e5e506a29b1ef5
BLAKE2b-256 925c903f079bf62e6d1821ace94a7e1c24ed4c3537230d3d64a20cf1f25af627

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca0e7a658fbafcddcaefaa07ba8dae9384be2343468a8e011061791588d839fa
MD5 536eee50fcfa3f859fa91d3876040ecc
BLAKE2b-256 79ea77c6ad183453fadb34ffee13e1948bf54f40023dee39d409bba499959bcc

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e5afe0a7ea0e3a7a257907060bee6724a6002b7eec55d0db16fd32409795f3e1
MD5 05b5dfa321372378d012a8d74af2da68
BLAKE2b-256 9218fbcdac63ac91a24a3a14b0c65986d87024169b1af53c655b02621b0a380b

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2604c6450f9dd2c42e223b1f5dca9643a23cfecc9fde4a94bb38e0d2693b136
MD5 0cdacb2d52c71b4bdf2d771b7d6d5476
BLAKE2b-256 55b55f918e1d59480f1a1843000c65b089e1d49f659fa3dfb9355a0fc9cac9fd

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9f335e5625feb90e323d7e3868ec337f7b9ad88b5d633f876e3b778813021dab
MD5 bd90e9443f8f16cd92e269e092347251
BLAKE2b-256 d1f962ed7689f0a54c9042b95166e68d771b4f80edc2a6f21a020a7bbc5b9d9e

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp311-cp311-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp311-cp311-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 5ecfc6559132116dedfc482d0ad9df8a89dc5909eebffd22f3deb684132d002f
MD5 cbfdaf1af63d74d71f930405834e7f4a
BLAKE2b-256 cac0190a8d52f2914d67448fce2700819e0e0be53ea722009b8daa27e5afcf63

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8a0ae37576ed444fe853709bdceb2be4c7df6f7acae17b8378765bd28e61b3ae
MD5 23a456f2ecc2b536ef01dfe01bf9ca9e
BLAKE2b-256 d904323462d71069381866a48a0f9b3bdcbcbab612a623a606591c87f357bfa5

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e0bbee6c2a5bf2a0017a9b5e397babb88f230e6f07c3cdff4a4c4bc75ed7c617
MD5 f21c79531181cf237a90a8892822eb4c
BLAKE2b-256 6fb0e021d86b22b5ce2ee58a3900827bc1432545600bb467f481bef920524509

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9347cc6822f38db2b1d1ce992f375289670e595a2d1c15961aacbe0977407dfc
MD5 47c258860d9a43fce78e2979c31e6a09
BLAKE2b-256 83715ff2ef1ddb8e12cf50b741d68de649731684779ab9cc7f5d15bbf335481a

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78ec3c3412cf277e6252764ee4acbdbec6920cc87ad65862272aaa0e24381eee
MD5 f7d7c60634420272fd339073c8488bf5
BLAKE2b-256 a1033e589945cebbd462f72b99242d11c03b88931255dc07ad91efe8180b1b49

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d840adcad7354be6f2ec28d0706528b0026e4c3934cc6566b84eac18633eab1b
MD5 c7014b2eecde79db9d899257c04920ae
BLAKE2b-256 303e255f0b7cc8a6472c9d1a02a673fc53cb2afc8d3b90197cae97242280e986

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d50e8c1e571ee39b5dfbc295c11ad65988879f68009dd281a6e1edbc2ff6c18c
MD5 880063d6fb729304da384ebca845e8e5
BLAKE2b-256 46974af0fb18d86b6787c3a92f5f743d277a39c9f93f40ba9c9d7508812eebeb

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 252957e208c23db72ca9918cb33e160c7833faebf295aaedb43f5b083832a267
MD5 89d0b467eecf1ce6b3474f8b3ed7fc79
BLAKE2b-256 4465520605576d848cfccb27611cbce924d8202c67bbc8a98f6cb8bc74151fbe

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp310-cp310-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp310-cp310-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 8d0068e40837c1d0df6e3abf1cdc9a34a6d2611d90e29610fa1d2455aeb4e2e5
MD5 c6bb334a6b5a17ff6dc3fddb3a15c424
BLAKE2b-256 34a5ceea3cb4f78810fb930445b344e53f12bf2d38a735bc66aa651b54e64eef

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5ba73aa3aca35d2981e0b31230d58abb7b5d7ca104e543ae49709208d8ce706a
MD5 0f43c62efe79e42080333bbdbd41df09
BLAKE2b-256 78af4c83c99656c500ca0db7fe6f349d6309372ea8bad9c78d5c161930977bfd

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 19d61ee6414c44a04addbe33005ab1f87539d9f395e25afcbe9a3c50ce77c65c
MD5 eab81410106e052d9a46b473a5c6230c
BLAKE2b-256 0f6d5b00299e878a5fff4cee7d14f0e6dc7d238b52e21c6174c6591ff139e136

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 795ad83940732b45d39b82571f87af0081c120feff2b12e748d96bb191169e33
MD5 a4a6c5c2150367eea81520793939c913
BLAKE2b-256 d8c096da5f5532ac500860a52f87a933cdea66436f1c436a76e80015ee2409c4

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 83dc89c5fd728fdb03b76f122f43b4dcee8c61f1489e232d9ad0f58020523e1c
MD5 ed08fb91ab38077db328db0d992dccd5
BLAKE2b-256 e5b653b73246dc2f0b5de5a31d9580ae1f8423f2c38346f46b566d7dc5ce401a

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e16dcaecffd55b955aa5e2b8a804379789c15987e8ebd2f32f01398a81e975b
MD5 a45ce7fabb07f52cd2e8ff2eab77fc37
BLAKE2b-256 79f499434cd54213f8dbb9298d35dbeab71806d55cab865de578d35ba9abe045

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 168093410b99f647ba61361b208f7b0d64dde1172b5b1796d765cd243cadb501
MD5 39cf963bfa0017785fa4c801e4f969f9
BLAKE2b-256 ef0b1c4dd0f4237d9b9dd3faa697b3ff9522a2c45254de268c058f23f025372b

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3964934731fd7a289a91d315919cf757f293969a4244941ab10513d2351b4e83
MD5 54c0b4a0aca364d9e2fa5cc363ec749d
BLAKE2b-256 f9573322816ea95fa24e97232b34ff2ec92a9cd7fe7d3c6465e664bd51849760

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp39-cp39-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp39-cp39-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 f04f97797df35e442ed09f529ad1235d1f1c0f30878e2fe09a2676b71a8801e0
MD5 07a3a38e94d72fdbd81c7ee50d634339
BLAKE2b-256 b62538784072ccd09e0fb95228815acbffb7aa97828b0419e940b8322d211b4b

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8a9d899953c722b9afd7e88dbefd8fb276c686c3116a43c577cfabf636180558
MD5 959e10955bbe9b7c798c31c55503b4d5
BLAKE2b-256 13e5e6b46331abdf395dc653432df13979e44c7d88d5135d93b051093b402408

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: matplotlib-3.6.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 CPython/3.10.4

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d0e9ac04065a814d4cf2c6791a2ad563f739ae3ae830d716d54245c2b96fead6
MD5 4b7da0f51f4cf73c9817ad1a01efbbe8
BLAKE2b-256 afa7952b42ca5ba42bca5dd9424288dc3c47b956ff3cab61dd7005876e40464a

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f41e57ad63d336fe50d3a67bb8eaa26c09f6dda6a59f76777a99b8ccd8e26aec
MD5 cbf0c5a1af00241fddeed3cb95c6af4d
BLAKE2b-256 840f44267d1202eb8d63c27a0d69818bb88abd224bcdbc460966c2141461b875

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 74153008bd24366cf099d1f1e83808d179d618c4e32edb0d489d526523a94d9f
MD5 1f45ef25b9ad8daa93213e59bd14f7b1
BLAKE2b-256 e34dec9404380b50a1eefa2b492909613ad5cb67226eb9910b089ea6e36dafaf

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7f716b6af94dc1b6b97c46401774472f0867e44595990fe80a8ba390f7a0a028
MD5 3fffe389009a3313c5b5de33bfc05026
BLAKE2b-256 e39927762065dce08319c8ba93de899bdfb953ed679ccb4c05342f2b80963c75

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0844523dfaaff566e39dbfa74e6f6dc42e92f7a365ce80929c5030b84caa563a
MD5 934badeaef338af80d0a5a9942492c69
BLAKE2b-256 d25587d77ea67bc70d158a695a54266bc8c825f3212bf45b0bb02a3b2d7f2678

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 380d48c15ec41102a2b70858ab1dedfa33eb77b2c0982cb65a200ae67a48e9cb
MD5 65e94136c669506f2d0c1dab367c2b4b
BLAKE2b-256 22aa7f0f1b2405f38d782bd882340ee5ed9d9414fd6b0a1febcedb7422010007

See more details on using hashes here.

File details

Details for the file matplotlib-3.6.2-cp38-cp38-macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for matplotlib-3.6.2-cp38-cp38-macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 8a8dbe2cb7f33ff54b16bb5c500673502a35f18ac1ed48625e997d40c922f9cc
MD5 2ecc476d5b77b5fe1b4f44d2ca736da0
BLAKE2b-256 7ce490bb581ed9922e8b7709808de1f906bc885750d61df87752fd58655a2d5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page