A Python library for computing the Mel-Cepstral Distance (also known as Mel-Cepstral Distortion, MCD) between two inputs. This implementation is based on the paper 'Mel-Cepstral Distance Measure for Objective Speech Quality Assessment' by Kubichek (1993).
Project description
mel-cepstral-distance
A Python library for computing the Mel-Cepstral Distance (also known as Mel-Cepstral Distortion, MCD) between two inputs. This implementation is based on the method proposed by Robert F. Kubichek in Mel-Cepstral Distance Measure for Objective Speech Quality Assessment.
- Compute MCD between two inputs: audio files, amplitude spectrograms, mel spectrograms, or MFCCs.
- Remove pauses from audio files or feature representations (amplitude spectrograms, mel spectrograms, or MFCCs) using a threshold.
- Align feature representations using either Dynamic Time Warping (DTW) or zero-padding.
- Calculate an alignment penalty as an additional metric to indicate the extent of alignment applied.
Getting Started
Installation
pip install mel-cepstral-distance
Example usage
Compare two audio files with default parameters:
from mel_cepstral_distance import compare_audio_files
mcd, penalty = compare_audio_files(
'examples/GT.wav',
'examples/WaveGlow.wav',
)
print(f'MCD: {mcd:.2f}, Penalty: {penalty:.4f}')
# MCD: 4.03, Penalty: 0.0197
Calculation
Spectrogram
$$ X(k, m) = \text{FFT of } x_k(n), \text{ for real input.} $$
Where:
- $X(k, m)$: The result (amplitude spectrogram) of the real-valued FFT for the $k$-th frame at frequency index $m$.
- $x_k(n)$: The time-domain signal of the $k$-th frame.
- $\text{FFT}$: The real-valued discrete Fourier transform, computed using
np.fft.rfft
.
Mel spectrogram
$$ X_{k,n} = \log_{10}\left\lbrace\sum_m^M |X(k, m)|^2 \cdot w_n(m)\right\rbrace $$
Where:
- $X_{k,n}$: The logarithmic Mel-scaled power spectrogram for the $k$-th frame at Mel frequency $n$.
- $X(k, m)$: The amplitude spectrum of the $k$-th frame at frequency $m$.
- $M$: The total number of Mel frequency bins.
- $w_n(m)$: The Mel filter bank weights for Mel frequency $n$ and frequency bin $m$.
Mel-frequency cepstral coefficients
$$ MC_X(i, k) = \sum_{n=1}^{M} X_{k,n} \cos\left[i\left(n - \frac{1}{2}\right)\frac{\pi}{M}\right] $$
Where:
- $MC_X(i, k)$: The $i$-th Mel-frequency cepstral coefficient (MFCC) for the $k$-th frame.
- $X_{k,n}$: The logarithmic Mel-scaled power spectrogram for the $k$-th frame at Mel frequency $n$.
- $M$: The total number of Mel frequency bins.
- $i$: The index of the MFCC being computed.
Mel-cepstral distance
Per frame
$$ MCD(k) = \alpha\sqrt{\sum_{i=s}^{D} \left(MC_X(i, k) - MC_Y(i, k)\right)^2} $$
Where:
- $MCD(k)$: The Mel-cepstral distance for the $k$-th frame.
- $MC_X(i, k)$: The $i$-th MFCC of the reference signal for the $k$-th frame.
- $MC_Y(i, k)$: The $i$-th MFCC of the target signal for the $k$-th frame.
- $D$: The number of MFCCs used in the computation.
- $\alpha$: Optional scaling factor used in some literature, e.g. $\frac{10\sqrt{2}}{\ln 10}$.
- Note: Kubichek didn't use it, so it has value 1
- $s$: Parameter to exclude the 0th coefficient (corresponding to energy):
- $s = 0$: Includes the 0th coefficient
- $s = 1$: Excludes the 0th coefficient
Mean over all frames
$$ MCD = \frac{1}{N} \sum_{k=1}^{N} MCD(k) $$
Where:
- $MCD$: The mean Mel-cepstral distance over all frames.
- $N$: The total number of frames.
- $MCD(k)$: The Mel-cepstral distance for the $k$-th frame.
Alignment penalty during dynamic time warping (DTW)
$$ PEN = 2 - \frac{N_X + N_Y}{N_{XY}} $$
Where:
- $N_X$: The number of frames in the reference sequence.
- $N_Y$: The number of frames in the target sequence.
- $N_{XY}$: The number of frames after alignment (same for X and Y).
- $PEN$: A value in interval [$0$, $1$), where a smaller value indicates less alignment.
Used parameters in literature
Literature | Sampling Rate | Window Size | Hop Length | FFT Size | Window Function | $M$ | Min Frequency | Max Frequency | $s$ | $D$ | Pause | DTW | $\alpha$ | Smallest MCD | Largest MCD | Citation MCD | Domain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[1] | 8kHz | 32ms/256 | <16ms/128* | 32ms/256* | ? | 20 | 0Hz* | 4kHz* | 1 | 16 | no | no | 1 | ~0.8 | ~1.05 | original | generic |
[2] | ? | ? | ? | ? | ? | 80* | 80Hz* | 12kHz* | 1 | 13 | yes* | no | 1 | 0.294 | 0.518 | [3] | TTS |
[3] | 24kHz* | ? | ? | ? | ? | 80 | 80Hz | 12kHz | 1 | 13 | yes* | no | 1 | 6.99 | 12.37 | [1] | TTS |
[4] | 16kHz* | 25ms | 5ms | ? | ? | ? | 0Hz* | 8kHz* | 1 | 24 | yes* | no | $\frac{10}{\ln(10)}$ | ~2.5dB | ~12.5dB | [5] | TTS |
[5] | ? | 30ms | 10ms | ? | Hamming | ? | ? | ? | 1 | 10 | yes* | yes | 1 | 3.415 | 4.066 | [1] | TTS |
[6] | ? | >10ms* | 5ms | >10ms* | Gaussian* | ? | ? | 8kHz* | 1 | 24 | no | no | $\frac{10 \sqrt{2}}{\ln(10)}$ | ~4.75 | ~6 | [7] | VC |
[7] | 16kHz | 40ms* | 5ms | 64ms/1024 | Gaussian | ? | ? | 12kHz | 1 | 40 | yes | no | $\frac{10 \sqrt{2}}{\ln(10)}$ | 2.32dB | 3.53dB | none | TTS |
[8] | 24kHz | 50ms/1200 | 12.5ms/300 | 2048/~85.3ms | Hann | 80 | 80Hz | 12kHz | 1 | 13 | yes* | yes | 1 | 4.83 | 5.68 | [1] | TTS |
[9] | 16kHz | 64ms/1024 | 16ms/256 | 128ms/2048 | Hann | 80 | 125Hz | 7.6kHz | 1* | 16* | yes* | yes | 1* | 10.62 | 14.38 | [1] | TTS |
[10] | 16kHz | ? | ? | ? | ? | ? | ? | ? | 1 | 16* | yes* | yes | 1* | 8.67 | 19.41 | none | TTS |
[11] | 16kHz* | 64ms* (at 16kHz)/1024 | 16ms* (at 16kHz)/256 | 64ms*/1024* | Hann* | 80 | 0Hz | 8kHz | 1 | 60 | yes* | no | $\frac{10 \sqrt{2}}{\ln(10)}$ | 5.32dB | 6.78dB | [12] | TTS |
*Parameters are not explicitly stated, but were estimated from the information in the literature
Literature:
- [1] Kubichek, R. (1993). Mel-cepstral distance measure for objective speech quality assessment. Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing, 1, 125–128. https://doi.org/10.1109/PACRIM.1993.407206
- [2] Lee, Y., & Kim, T. (2019). Robust and Fine-grained Prosody Control of End-to-end Speech Synthesis. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5911–5915. https://doi.org/10.1109/ICASSP.2019.8683501
- [3] Ref-Tacotron -> Skerry-Ryan, R. J., Battenberg, E., Xiao, Y., Wang, Y., Stanton, D., Shor, J., Weiss, R., Clark, R., & Saurous, R. A. (2018). Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron. Proceedings of the 35th International Conference on Machine Learning, 4693–4702. https://proceedings.mlr.press/v80/skerry-ryan18a.html
- [4] Nature/ansp19-503 Anumanchipalli, G. K., Chartier, J., & Chang, E. F. (2019). Speech synthesis from neural decoding of spoken sentences. Nature, 568(7753), Article 7753. https://doi.org/10.1038/s41586-019-1119-1
- [5] Shah, N. J., Vachhani, B. B., Sailor, H. B., & Patil, H. A. (2014). Effectiveness of PLP-based phonetic segmentation for speech synthesis. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 270–274. https://doi.org/10.1109/ICASSP.2014.6853600
- [6] Kominek, J., Schultz, T., & Black, A. W. (2008). Synthesizer voice quality of new languages calibrated with mean mel cepstral distortion. SLTU, 63–68. http://www.cs.cmu.edu/~./awb/papers/sltu2008/kominek_black.sltu_2008.pdf
- [7] Mashimo, M., Toda, T., Shikano, K., & Campbell, N. (2001). Evaluation of cross-language voice conversion based on GMM and straight. 7th European Conference on Speech Communication and Technology (Eurospeech 2001), 361–364. https://doi.org/10.21437/Eurospeech.2001-111
- [8] Capacitron -> Battenberg, E., Mariooryad, S., Stanton, D., Skerry-Ryan, R. J., Shannon, M., Kao, D., & Bagby, T. (2019). Effective Use of Variational Embedding Capacity in Expressive End-to-End Speech Synthesis (No. arXiv:1906.03402). arXiv. http://arxiv.org/abs/1906.03402
- [9] Attentron -> Choi, S., Han, S., Kim, D., & Ha, S. (2020). Attentron: Few-Shot Text-to-Speech Utilizing Attention-Based Variable-Length Embedding. Interspeech 2020, 2007–2011. https://doi.org/10.21437/Interspeech.2020-2096
- [10] VoiceLoop -> Taigman, Y., Wolf, L., Polyak, A., & Nachmani, E. (2018). VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. 6th International Conference on Learning Representations (ICLR 2018), 2, 1374–1387. https://openreview.net/forum?id=SkFAWax0-
- [11] MIST-Tacotron -> Moon, S., Kim, S., & Choi, Y.-H. (2022). MIST-Tacotron: End-to-End Emotional Speech Synthesis Using Mel-Spectrogram Image Style Transfer. IEEE Access, 10, 25455–25463. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3156093
- [12] Kim, J., Choi, H., Park, J., Hahn, M., Kim, S., & Kim, J.-J. (2018). Korean Singing Voice Synthesis Based on an LSTM Recurrent Neural Network. Interspeech 2018, 1551–1555. https://doi.org/10.21437/Interspeech.2018-1575
Default parameters
Based on the values in the literature the default parameters were set:
- Hop Length (hop_len): 8ms
- Note: should be 1/2 or 1/4 of the window size
- Window Size (win_len): 32ms
- FFT Size (n_fft): 32ms
- Should match the window size.
- For faster computation, the sample equivalent should be a power of 2.
- Window Function (window): Hanning
- Sampling Rate (sample_rate): is taken from the audio file
- Min Frequency (fmin): 0Hz
- Max Frequency (fmax): sampling rate / 2
- Cannot exceed half the sampling rate.
- Num. Mel-Bands ($N$): 20
- Increasing the number will increase the resulting MCD values.
- $s$: 1
- $D$: 16
- $\alpha$: 1 (alternate values can be applied by multiplying the MCD with a custom factor)
- Aligning: DTW
- Align Target (align_target): MFCC
- Remove Silence: No
- Silence should be removed from Mel spectrograms before computing the MCD, with dataset-specific thresholds.
License
MIT License
Test coverage
Name Stmts Miss Cover Missing
------------------------------------------------------------------------
src/mel_cepstral_distance/__init__.py 2 0 100%
src/mel_cepstral_distance/alignment.py 84 0 100%
src/mel_cepstral_distance/api.py 371 0 100%
src/mel_cepstral_distance/computation.py 69 0 100%
src/mel_cepstral_distance/helper.py 38 0 100%
src/mel_cepstral_distance/silence.py 55 0 100%
------------------------------------------------------------------------
TOTAL 619 0 100%
Citation
If you want to cite this repo, you can use the BibTeX-entry generated by GitHub (see About => Cite this repository).
Taubert, S., & Sternkopf, J. (2025). mel-cepstral-distance (Version 0.0.4) [Computer software]. https://doi.org/10.5281/zenodo.15213012
Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 416228727 – CRC 1410
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mel_cepstral_distance-0.0.4.tar.gz
.
File metadata
- Download URL: mel_cepstral_distance-0.0.4.tar.gz
- Upload date:
- Size: 62.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8b395d909ee29720408229e0d0bc0db6569bf637a9e18243a881dbae68f16cac
|
|
MD5 |
775ba3a6070020feaacf0e4a951796d3
|
|
BLAKE2b-256 |
034db69222e53e6540c26f921b6e285f2161babdebd76fa597ea41614c68c55b
|
File details
Details for the file mel_cepstral_distance-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: mel_cepstral_distance-0.0.4-py3-none-any.whl
- Upload date:
- Size: 21.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b49d85ff34f70c66fe236a1f4c1a0ed9c09083afa47b66690c57bde50ebd6015
|
|
MD5 |
10607f63ca031522d29c6a18b7429877
|
|
BLAKE2b-256 |
4cf8f1ad7f5f24a8e783b0f17313d6000a12cb44dd91dd16f005456e1f6cb44c
|