NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality
Project description
mkl_random -- a NumPy-based Python interface to Intel® oneAPI Math Kernel Library (OneMKL) Random Number Generation functionality
mkl_random started as a part of Intel® Distribution for Python optimizations to NumPy.
Per NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a stand-alone package.
Prebuilt mkl_random can be installed into conda environment from Intel's channel using:
conda install -c https://software.repos.intel.com/python/conda mkl_random
or from conda forge channel:
conda install -c conda-forge mkl_random
To install mkl_random PyPI package please use following command:
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random
If command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random numpy==<numpy_version>
Where <numpy_version> should be the latest version from https://software.repos.intel.com/python/conda/
mkl_random is not fixed-seed backward compatible drop-in replacement for numpy.random, meaning that it implements sampling from the same distributions as numpy.random.
For distributions directly supported in Intel® OneMKL, method keyword is supported:
mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')
Additionally, mkl_random exposes different basic random number generation algorithms available in MKL. For example to use SFMT19937 use
mkl_random.RandomState(77777, brng='SFMT19937')
For generator families, such that MT2203 and Wichmann-Hill, a particular member of the family can be chosen by specifying brng=('WH', 3), etc.
The list of supported by mkl_random.RandomState constructor brng keywords is as follows:
- 'MT19937'
- 'SFMT19937'
- 'WH' or ('WH', id)
- 'MT2203' or ('MT2203', id)
- 'MCG31'
- 'R250'
- 'MRG32K3A'
- 'MCG59'
- 'PHILOX4X32X10'
- 'NONDETERM'
- 'ARS5'
To build mkl_random from sources on Linux:
- install a recent version of MKL, if necessary;
- execute
source /path_to_oneapi/mkl/latest/env/vars.sh; - execute
python -m pip install .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file mkl_random-1.3.0-0-cp313-cp313-win_amd64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp313-cp313-win_amd64.whl
- Upload date:
- Size: 315.6 kB
- Tags: CPython 3.13, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
87af834bb87c852ac1f82145132f4dcd2444bb6063b0fa653712b6d27310ce95
|
|
| MD5 |
a5791c8823991cff1b5ac027e6a791e8
|
|
| BLAKE2b-256 |
479f7b7598e59dd6a91c12ebc0fe4814157029e16819a83ebca9c440f59b1118
|
File details
Details for the file mkl_random-1.3.0-0-cp313-cp313-manylinux_2_28_x86_64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp313-cp313-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 411.0 kB
- Tags: CPython 3.13, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4e59e94ce44a729f14b414238b4a978a003211ef0861e3312725995038545706
|
|
| MD5 |
d00f1c80246abf9d054fb788e5eb2220
|
|
| BLAKE2b-256 |
e70dbc570979de0a6998a27c0e003c70af44ba65532e7c2ed632c9158d7839b7
|
File details
Details for the file mkl_random-1.3.0-0-cp312-cp312-win_amd64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 313.8 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8fcf0161259df8cbeacc81f7772d5cef377e394de4917f33e150d35632524cdc
|
|
| MD5 |
b7a6e1d84dd2f704d4ef35f0b6fa0b00
|
|
| BLAKE2b-256 |
a27243d371b8d617f0029b49810140c1dfd262d5b9e5ab190fab5890eae6e6eb
|
File details
Details for the file mkl_random-1.3.0-0-cp312-cp312-manylinux_2_28_x86_64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp312-cp312-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 410.1 kB
- Tags: CPython 3.12, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0dbed6605c41cf37eaea438352a922a5cf4dc123fda6e7115cc51c21f547c55c
|
|
| MD5 |
e7a9664d708edfad5b53b43ca385dc8a
|
|
| BLAKE2b-256 |
b55a9141eb57c48f8f15741d82576517debb939494fe998b45f62226180a0fd5
|
File details
Details for the file mkl_random-1.3.0-0-cp311-cp311-win_amd64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 332.7 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
91926372bb2625f612a00aedb1b2c17cb23fea7a414f4b0708413e02cf572fcf
|
|
| MD5 |
99a9c069d4c34171709420d38737b7cf
|
|
| BLAKE2b-256 |
ec1c52c7ef550126ef22f9fa98b5df1579f9557fd327750897562dbfaba2f55b
|
File details
Details for the file mkl_random-1.3.0-0-cp311-cp311-manylinux_2_28_x86_64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp311-cp311-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 411.9 kB
- Tags: CPython 3.11, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ccc42e7401be4e508f7af86745e1948a9d693caf37348eb4b0c5264a6ed11d36
|
|
| MD5 |
2936523bae9b74f3d9703aed64e23e6d
|
|
| BLAKE2b-256 |
9a5aed909e0fa6a2d055d7c507bc0933d33c6ef807b85ddd8cf2a96da3acfa0a
|
File details
Details for the file mkl_random-1.3.0-0-cp310-cp310-win_amd64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 329.9 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5938ac4319d0d5d705d342329d6ac1c58504350a9935393f8249fdd46bb39a12
|
|
| MD5 |
5a10023564c4113fc61872e80f67387b
|
|
| BLAKE2b-256 |
697d27297f9b63793a18b6fac966b2b78b6b3f1f3f45d7c980e045ddd0d2ec92
|
File details
Details for the file mkl_random-1.3.0-0-cp310-cp310-manylinux_2_28_x86_64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp310-cp310-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 404.2 kB
- Tags: CPython 3.10, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
74f3a0ba8a9e19fc2678ecfe68812fc43c7edcf6f2dd8555195691f3f5f24f4f
|
|
| MD5 |
70d37b1d56d8535b3b984b905c90244c
|
|
| BLAKE2b-256 |
484447960d865dfc3661d764bcc1ea7dd400df0cbe7d956393decd02745681ef
|
File details
Details for the file mkl_random-1.3.0-0-cp39-cp39-win_amd64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 330.0 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2b9dabae07c2e04ecb8783c0df698eed6f1ab315609f41e1b2ecf683cb56d724
|
|
| MD5 |
1c6f7d6afc1b3de61eb2c3047dadad22
|
|
| BLAKE2b-256 |
04c877d0273a61cd430ba0e0d0e4a24639dedbe6a5c299f8da3cb2e2e2346fdc
|
File details
Details for the file mkl_random-1.3.0-0-cp39-cp39-manylinux_2_28_x86_64.whl.
File metadata
- Download URL: mkl_random-1.3.0-0-cp39-cp39-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 404.3 kB
- Tags: CPython 3.9, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b7e4f5186b431d6f9c9afc7443e1bc2ab0a6ad1f5b27f9665c95ddbea5679f23
|
|
| MD5 |
3e77df631315b9da64f6f86193a6c633
|
|
| BLAKE2b-256 |
2bf14945e59c4cba06d0ebb302c422cb0825b6f1f51d43ec206eb49dc972da39
|