This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
<p align="center"><img src="logo.png" align="left" alt="MOSFiT" width="300"/></p>
[![Build Status](https://img.shields.io/travis/guillochon/MOSFiT.svg)](https://travis-ci.org/guillochon/MOSFiT)
[![Coverage Status](https://coveralls.io/repos/github/guillochon/MOSFiT/badge.svg?branch=master)](https://coveralls.io/github/guillochon/MOSFiT?branch=master)
[![Python Version](https://img.shields.io/badge/python-3.4%2C%203.5-blue.svg)](https://www.python.org)
[![PyPI version](https://badge.fury.io/py/mosfit.svg)](https://badge.fury.io/py/mosfit)

`MOSFiT` (**M**oduluar **O**pen-**S**ource **Fi**tter for **T**ransients) is a Python 3.x package that performs maximum likelihood analysis to fit semi-analytical model predictions to observed transient data. Data can be provided by the user, or can be pulled automatically from the [Open Supernova Catalog](https://sne.space) by its name, and thus the code can be used to fit *any* supernova within that database, or any database that shares the format described in the [OSC schema](https://github.com/astrocatalogs/supernovae/blob/master/SCHEMA.md) (such as the [Open TDE Catalog](https://tde.space) or the [Open Nova Catalog](https://opennova.space)).


##Getting Started

To install `MOSFiT` into your Python environment, clone the package and then run the `setup.py` file:

```bash
git clone https://github.com/guillochon/MOSFiT.git
cd MOSFiT
python setup.py install
```

Once installed, MOSFiT can be run from any directory, and it's typically convenient to make a new directory for your project.

```bash
mkdir mosfit_runs
cd mosfit_runs
```

Then, to run `MOSFiT`, pass an event name to the program via the `-e` flag (the default model is a simple Nickel-Cobalt decay with diffusion):

```bash
python -m mosfit -e SN2015bn
```

Multiple events can be fit in succession by passing a list of names separated by spaces (names containing spaces can be specified using quotation marks):

```bash
python -m mosfit -e SN2015bn LSQ12dlf "SDSS-II SN 5751"
```

MOSFiT is parallelized and can be run in parallel by prepending `mpirun -np #`, where `#` is the number of processors in your machine +1 for the master process. So, if you computer has 4 processors, the above command would be:

```bash
mpirun -np 5 python -m mosfit -e SN2015bn
```

MOSFiT can also be run without specifying an event, which will yield a collection of light curves for the specified model described by the priors on the possible combinations of input parameters specified in the `parameters.json` file. This is useful for determining the range of possible outcomes for a given theoretical model:

```bash
mpirun -np 5 python -m mosfit -i 0 -m magnetar
```

The code outputs JSON files for each event/model combination that each contain a set of walkers that have been relaxed into an equilibrium about the combinations of parameters with the maximum likelihood. This output is visualized via an example Jupyter notebook (`mosfit.ipynb`) included with the software in the main directory, which by default shows output from the last `MOSFiT` run.
Release History

Release History

0.1.5

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
mosfit-0.1.5.tar.gz (2.2 MB) Copy SHA256 Checksum SHA256 Source Oct 7, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting