Skip to main content

Type hints for NumPy.

Project description

PyPI version Downloads PyPI version codecov Code style

💡 Type hints for NumPy
💡 Extends numpy.typing
💡 Extensive dynamic type checks for dtypes and shapes of arrays

Example of a hinted function with nptyping:

>>> from nptyping import NDArray, Int, Shape

>>> def func(arr: NDArray[Shape["2, 2"], Int]) -> None:
...     pass

Installation

pip install nptyping

Instance checking

Example of instance checking:

>>> import numpy as np

>>> isinstance(np.array([[1, 2], [3, 4]]), NDArray[Shape["2, 2"], Int])
True

>>> isinstance(np.array([[1., 2.], [3., 4.]]), NDArray[Shape["2, 2"], Int])
False

>>> isinstance(np.array([1, 2, 3, 4]), NDArray[Shape["2, 2"], Int])
False

nptyping also provides assert_isinstance. In contrast to assert isinstance(...), this won't cause IDEs or MyPy complaints. Here is an example:

>>> from nptyping import assert_isinstance

>>> assert_isinstance(np.array([1]), NDArray[Shape["1"], Int])
True

Structured arrays

You can also express structured arrays using nptyping.Structure:

>>> from nptyping import Structure

>>> Structure["name: Str, age: Int"]
Structure['age: Int, name: Str']

Here is an example to see it in action:

>>> from typing import Any
>>> import numpy as np
>>> from nptyping import NDArray, Structure

>>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")])
>>> isinstance(arr, NDArray[Any, Structure["name: Str, age: Int"]])
True

Record arrays

The recarray is a specialization of a structured array. You can use RecArray to express them.

>>> from nptyping import RecArray

>>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")])
>>> rec_arr = arr.view(np.recarray)
>>> isinstance(rec_arr, RecArray[Any, Structure["name: Str, age: Int"]])
True

More examples

Here is an example of a rich expression that can be done with nptyping:

def plan_route(
        locations: NDArray[Shape["[from, to], [x, y]"], Float]
) -> NDArray[Shape["* stops, [x, y]"], Float]:
    ...

More examples can be found in the documentation.

Documentation

  • User documentation
    The place to go if you are using this library.

  • Release notes
    To see what's new, check out the release notes.

  • Contributing
    If you're interested in developing along, find the guidelines here.

  • Licence
    If you want to check out how open source this library is.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nptyping-2.1.3.tar.gz (18.0 kB view hashes)

Uploaded source

Built Distribution

nptyping-2.1.3-py3-none-any.whl (31.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page