Skip to main content

Fast N-dimensional aggregation functions with Numba

Project description

Numbagg: Fast N-dimensional aggregation functions with Numba

GitHub Workflow CI Status PyPI Version

Fast, flexible N-dimensional array functions written with Numba and NumPy's generalized ufuncs.

Why use numbagg?

Performance

  • Outperforms pandas
    • On a single core, 2-10x faster for moving window functions, 1-2x faster for aggregation and grouping functions
    • When parallelizing with multiple cores, 4-30x faster
  • Outperforms bottleneck on multiple cores
    • On a single core, matches bottleneck
    • When parallelizing with multiple cores, 3-7x faster
  • Outperforms numpy on multiple cores
    • On a single core, matches numpy
    • When parallelizing with multiple cores, 5-15x faster
  • ...though numbagg's functions are JIT compiled, so the first run is much slower

Versatility

  • More functions (though bottleneck has some functions we don't have, and pandas' functions have many more parameters)
  • Functions work for >3 dimensions with flexible axis handling (see Axis Parameter Behavior below)
  • Written in numba — way less code, simple to inspect, simple to improve

Functions & benchmarks

Summary benchmark

Two benchmarks summarize numbagg's performance — the first with a 1D array of 10M elements without parallelization, and a second with a 2D array of 100x10K elements with parallelization[^6]. Numbagg's relative performance is much higher where parallelization is possible. A wider range of arrays is listed in the full set of benchmarks below.

The values in the table are numbagg's performance as a multiple of other libraries for a given shaped array calculated over the final axis. (so 1.00x means numbagg is equal, higher means numbagg is faster.)

func 1D
pandas
1D
bottleneck
1D
numpy
2D
pandas
2D
bottleneck
2D
numpy
bfill 1.06x 1.13x n/a 11.11x 5.04x n/a
ffill 1.12x 0.99x n/a 11.50x 4.25x n/a
group_nanall 1.38x n/a n/a 7.77x n/a n/a
group_nanany 1.12x n/a n/a 6.21x n/a n/a
group_nanargmax 1.16x n/a n/a 6.81x n/a n/a
group_nanargmin 1.17x n/a n/a 6.48x n/a n/a
group_nancount 1.05x n/a n/a 4.94x n/a n/a
group_nanfirst 1.52x n/a n/a 11.13x n/a n/a
group_nanlast 1.12x n/a n/a 5.56x n/a n/a
group_nanmax 1.13x n/a n/a 5.13x n/a n/a
group_nanmean 1.14x n/a n/a 5.61x n/a n/a
group_nanmin 1.12x n/a n/a 5.75x n/a n/a
group_nanprod 1.15x n/a n/a 5.25x n/a n/a
group_nanstd 1.14x n/a n/a 5.41x n/a n/a
group_nansum_of_squares 1.33x n/a n/a 8.00x n/a n/a
group_nansum 1.18x n/a n/a 5.63x n/a n/a
group_nanvar 1.13x n/a n/a 4.88x n/a n/a
move_corr 16.42x n/a n/a 115.76x n/a n/a
move_cov 12.30x n/a n/a 86.56x n/a n/a
move_exp_nancorr 6.65x n/a n/a 46.98x n/a n/a
move_exp_nancount 1.88x n/a n/a 9.95x n/a n/a
move_exp_nancov 6.53x n/a n/a 43.63x n/a n/a
move_exp_nanmean 1.61x n/a n/a 10.65x n/a n/a
move_exp_nanstd 1.76x n/a n/a 12.40x n/a n/a
move_exp_nansum 1.09x n/a n/a 9.01x n/a n/a
move_exp_nanvar 1.77x n/a n/a 11.41x n/a n/a
move_mean 6.03x 1.34x n/a 26.60x 6.25x n/a
move_std 4.76x 0.89x n/a 29.09x 6.24x n/a
move_sum 5.16x 1.13x n/a 24.02x 6.10x n/a
move_var 5.45x 1.05x n/a 29.54x 6.05x n/a
nanargmax[^5] 2.40x 0.53x n/a 2.32x 0.93x n/a
nanargmin[^5] 2.35x 0.50x n/a 2.53x 1.00x n/a
nancount 2.01x n/a 1.59x 12.26x n/a 3.96x
nanmax[^5] 3.15x 0.50x 0.09x 3.59x 3.24x 0.09x
nanmean 3.00x 1.01x 3.82x 18.98x 5.04x 19.33x
nanmin[^5] 3.07x 0.50x 0.09x 3.39x 3.03x 0.09x
nanquantile 0.69x n/a 0.53x 4.94x n/a 4.33x
nanstd 1.63x 1.61x 3.39x 12.39x 10.18x 22.03x
nansum 2.48x 0.94x 3.31x 20.47x 4.65x 17.90x
nanvar 1.61x 1.65x 3.40x 12.62x 10.49x 22.13x

Full benchmarks

func shape size ndim pandas bottleneck numpy numbagg pandas_ratio bottleneck_ratio numpy_ratio numbagg_ratio
bfill (1000,) 1000 1 0ms 0ms n/a 0ms 0.38x 0.01x n/a 1.00x
(10000000,) 10000000 1 15ms 16ms n/a 14ms 1.06x 1.13x n/a 1.00x
(100, 100000) 10000000 2 37ms 17ms n/a 3ms 11.11x 5.04x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 18ms n/a 3ms n/a 6.13x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 199ms n/a 31ms n/a 6.44x n/a 1.00x
ffill (1000,) 1000 1 0ms 0ms n/a 0ms 0.37x 0.01x n/a 1.00x
(10000000,) 10000000 1 15ms 14ms n/a 14ms 1.12x 0.99x n/a 1.00x
(100, 100000) 10000000 2 37ms 14ms n/a 3ms 11.50x 4.25x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 14ms n/a 3ms n/a 4.64x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 176ms n/a 31ms n/a 5.72x n/a 1.00x
group_nanall (1000,) 1000 1 0ms n/a n/a 0ms 0.72x n/a n/a 1.00x
(10000000,) 10000000 1 48ms n/a n/a 35ms 1.38x n/a n/a 1.00x
(100, 100000) 10000000 2 18ms n/a n/a 2ms 7.77x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
group_nanany (1000,) 1000 1 0ms n/a n/a 0ms 0.70x n/a n/a 1.00x
(10000000,) 10000000 1 49ms n/a n/a 44ms 1.12x n/a n/a 1.00x
(100, 100000) 10000000 2 18ms n/a n/a 3ms 6.21x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanargmax (1000,) 1000 1 0ms n/a n/a 0ms 1.07x n/a n/a 1.00x
(10000000,) 10000000 1 49ms n/a n/a 42ms 1.16x n/a n/a 1.00x
(100, 100000) 10000000 2 17ms n/a n/a 3ms 6.81x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanargmin (1000,) 1000 1 0ms n/a n/a 0ms 1.06x n/a n/a 1.00x
(10000000,) 10000000 1 49ms n/a n/a 42ms 1.17x n/a n/a 1.00x
(100, 100000) 10000000 2 17ms n/a n/a 3ms 6.48x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nancount (1000,) 1000 1 0ms n/a n/a 0ms 0.66x n/a n/a 1.00x
(10000000,) 10000000 1 44ms n/a n/a 42ms 1.05x n/a n/a 1.00x
(100, 100000) 10000000 2 13ms n/a n/a 3ms 4.94x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
group_nanfirst (1000,) 1000 1 0ms n/a n/a 0ms 0.73x n/a n/a 1.00x
(10000000,) 10000000 1 52ms n/a n/a 34ms 1.52x n/a n/a 1.00x
(100, 100000) 10000000 2 16ms n/a n/a 1ms 11.13x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
group_nanlast (1000,) 1000 1 0ms n/a n/a 0ms 0.72x n/a n/a 1.00x
(10000000,) 10000000 1 47ms n/a n/a 42ms 1.12x n/a n/a 1.00x
(100, 100000) 10000000 2 14ms n/a n/a 2ms 5.56x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
group_nanmax (1000,) 1000 1 0ms n/a n/a 0ms 0.71x n/a n/a 1.00x
(10000000,) 10000000 1 48ms n/a n/a 43ms 1.13x n/a n/a 1.00x
(100, 100000) 10000000 2 14ms n/a n/a 3ms 5.13x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanmean (1000,) 1000 1 0ms n/a n/a 0ms 0.72x n/a n/a 1.00x
(10000000,) 10000000 1 50ms n/a n/a 44ms 1.14x n/a n/a 1.00x
(100, 100000) 10000000 2 16ms n/a n/a 3ms 5.61x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanmin (1000,) 1000 1 0ms n/a n/a 0ms 0.73x n/a n/a 1.00x
(10000000,) 10000000 1 48ms n/a n/a 43ms 1.12x n/a n/a 1.00x
(100, 100000) 10000000 2 14ms n/a n/a 2ms 5.75x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanprod (1000,) 1000 1 0ms n/a n/a 0ms 0.70x n/a n/a 1.00x
(10000000,) 10000000 1 48ms n/a n/a 42ms 1.15x n/a n/a 1.00x
(100, 100000) 10000000 2 14ms n/a n/a 3ms 5.25x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
group_nanstd (1000,) 1000 1 0ms n/a n/a 0ms 0.71x n/a n/a 1.00x
(10000000,) 10000000 1 51ms n/a n/a 45ms 1.14x n/a n/a 1.00x
(100, 100000) 10000000 2 17ms n/a n/a 3ms 5.41x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nansum (1000,) 1000 1 0ms n/a n/a 0ms 0.74x n/a n/a 1.00x
(10000000,) 10000000 1 51ms n/a n/a 43ms 1.18x n/a n/a 1.00x
(100, 100000) 10000000 2 16ms n/a n/a 3ms 5.63x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nanvar (1000,) 1000 1 0ms n/a n/a 0ms 0.70x n/a n/a 1.00x
(10000000,) 10000000 1 51ms n/a n/a 45ms 1.13x n/a n/a 1.00x
(100, 100000) 10000000 2 16ms n/a n/a 3ms 4.88x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 2ms n/a n/a n/a 1.00x
group_nansum_of_squares (1000,) 1000 1 0ms n/a n/a 0ms 0.88x n/a n/a 1.00x
(10000000,) 10000000 1 57ms n/a n/a 43ms 1.33x n/a n/a 1.00x
(100, 100000) 10000000 2 22ms n/a n/a 3ms 8.00x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 1ms n/a n/a n/a 1.00x
move_corr (1000,) 1000 1 0ms n/a n/a 0ms 2.68x n/a n/a 1.00x
(10000000,) 10000000 1 710ms n/a n/a 43ms 16.42x n/a n/a 1.00x
(100, 100000) 10000000 2 683ms n/a n/a 6ms 115.76x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 5ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 49ms n/a n/a n/a 1.00x
move_cov (1000,) 1000 1 0ms n/a n/a 0ms 2.43x n/a n/a 1.00x
(10000000,) 10000000 1 490ms n/a n/a 40ms 12.30x n/a n/a 1.00x
(100, 100000) 10000000 2 460ms n/a n/a 5ms 86.56x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 4ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 44ms n/a n/a n/a 1.00x
move_mean (1000,) 1000 1 0ms 0ms n/a 0ms 0.46x 0.01x n/a 1.00x
(10000000,) 10000000 1 92ms 21ms n/a 15ms 6.03x 1.34x n/a 1.00x
(100, 100000) 10000000 2 88ms 21ms n/a 3ms 26.60x 6.25x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 20ms n/a 3ms n/a 6.66x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 228ms n/a 32ms n/a 7.12x n/a 1.00x
move_std (1000,) 1000 1 0ms 0ms n/a 0ms 0.53x 0.02x n/a 1.00x
(10000000,) 10000000 1 141ms 26ms n/a 30ms 4.76x 0.89x n/a 1.00x
(100, 100000) 10000000 2 123ms 26ms n/a 4ms 29.09x 6.24x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 26ms n/a 4ms n/a 7.37x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 291ms n/a 37ms n/a 7.82x n/a 1.00x
move_sum (1000,) 1000 1 0ms 0ms n/a 0ms 0.46x 0.01x n/a 1.00x
(10000000,) 10000000 1 95ms 21ms n/a 18ms 5.16x 1.13x n/a 1.00x
(100, 100000) 10000000 2 83ms 21ms n/a 3ms 24.02x 6.10x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 21ms n/a 3ms n/a 6.79x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 227ms n/a 31ms n/a 7.29x n/a 1.00x
move_var (1000,) 1000 1 0ms 0ms n/a 0ms 0.50x 0.02x n/a 1.00x
(10000000,) 10000000 1 131ms 25ms n/a 24ms 5.45x 1.05x n/a 1.00x
(100, 100000) 10000000 2 122ms 25ms n/a 4ms 29.54x 6.05x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 25ms n/a 4ms n/a 7.12x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 275ms n/a 36ms n/a 7.69x n/a 1.00x
move_exp_nancorr (1000,) 1000 1 0ms n/a n/a 0ms 2.33x n/a n/a 1.00x
(10000000,) 10000000 1 344ms n/a n/a 52ms 6.65x n/a n/a 1.00x
(100, 100000) 10000000 2 338ms n/a n/a 7ms 46.98x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 6ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 55ms n/a n/a n/a 1.00x
move_exp_nancount (1000,) 1000 1 0ms n/a n/a 0ms 0.57x n/a n/a 1.00x
(10000000,) 10000000 1 51ms n/a n/a 27ms 1.88x n/a n/a 1.00x
(100, 100000) 10000000 2 47ms n/a n/a 5ms 9.95x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 4ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 40ms n/a n/a n/a 1.00x
move_exp_nancov (1000,) 1000 1 0ms n/a n/a 0ms 2.19x n/a n/a 1.00x
(10000000,) 10000000 1 215ms n/a n/a 33ms 6.53x n/a n/a 1.00x
(100, 100000) 10000000 2 234ms n/a n/a 5ms 43.63x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 5ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 43ms n/a n/a n/a 1.00x
move_exp_nanmean (1000,) 1000 1 0ms n/a n/a 0ms 0.39x n/a n/a 1.00x
(10000000,) 10000000 1 47ms n/a n/a 30ms 1.61x n/a n/a 1.00x
(100, 100000) 10000000 2 52ms n/a n/a 5ms 10.65x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 4ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 43ms n/a n/a n/a 1.00x
move_exp_nanstd (1000,) 1000 1 0ms n/a n/a 0ms 0.68x n/a n/a 1.00x
(10000000,) 10000000 1 64ms n/a n/a 36ms 1.76x n/a n/a 1.00x
(100, 100000) 10000000 2 74ms n/a n/a 6ms 12.40x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 5ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 44ms n/a n/a n/a 1.00x
move_exp_nansum (1000,) 1000 1 0ms n/a n/a 0ms 0.38x n/a n/a 1.00x
(10000000,) 10000000 1 36ms n/a n/a 33ms 1.09x n/a n/a 1.00x
(100, 100000) 10000000 2 43ms n/a n/a 5ms 9.01x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 4ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 42ms n/a n/a n/a 1.00x
move_exp_nanvar (1000,) 1000 1 0ms n/a n/a 0ms 0.40x n/a n/a 1.00x
(10000000,) 10000000 1 56ms n/a n/a 32ms 1.77x n/a n/a 1.00x
(100, 100000) 10000000 2 64ms n/a n/a 6ms 11.41x n/a n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a n/a 4ms n/a n/a n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a n/a 46ms n/a n/a n/a 1.00x
nanargmax[^5] (1000,) 1000 1 0ms 0ms n/a 0ms 17.65x 0.17x n/a 1.00x
(10000000,) 10000000 1 24ms 5ms n/a 10ms 2.40x 0.53x n/a 1.00x
(100, 100000) 10000000 2 25ms 10ms n/a 11ms 2.32x 0.93x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 11ms n/a 11ms n/a 1.00x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 107ms n/a 108ms n/a 0.99x n/a 1.00x
nanargmin[^5] (1000,) 1000 1 0ms 0ms n/a 0ms 17.72x 0.17x n/a 1.00x
(10000000,) 10000000 1 25ms 5ms n/a 11ms 2.35x 0.50x n/a 1.00x
(100, 100000) 10000000 2 25ms 10ms n/a 10ms 2.53x 1.00x n/a 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 11ms n/a 11ms n/a 1.00x n/a 1.00x
(100, 1000, 1000) 100000000 3 n/a 108ms n/a 108ms n/a 1.00x n/a 1.00x
nancount (1000,) 1000 1 0ms n/a 0ms 0ms 0.77x n/a 0.02x 1.00x
(10000000,) 10000000 1 3ms n/a 3ms 2ms 2.01x n/a 1.59x 1.00x
(100, 100000) 10000000 2 8ms n/a 3ms 1ms 12.26x n/a 3.96x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a 3ms 1ms n/a n/a 3.97x 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a 33ms 7ms n/a n/a 5.07x 1.00x
nanmax[^5] (1000,) 1000 1 0ms 0ms 0ms 0ms 11.07x 0.17x 0.55x 1.00x
(10000000,) 10000000 1 32ms 5ms 1ms 10ms 3.15x 0.50x 0.09x 1.00x
(100, 100000) 10000000 2 36ms 33ms 1ms 10ms 3.59x 3.24x 0.09x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 32ms 1ms 10ms n/a 3.24x 0.10x 1.00x
(100, 1000, 1000) 100000000 3 n/a 320ms 11ms 98ms n/a 3.26x 0.11x 1.00x
nanmean (1000,) 1000 1 0ms 0ms 0ms 0ms 0.39x 0.00x 0.05x 1.00x
(10000000,) 10000000 1 17ms 6ms 21ms 6ms 3.00x 1.01x 3.82x 1.00x
(100, 100000) 10000000 2 21ms 5ms 21ms 1ms 18.98x 5.04x 19.33x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 5ms 21ms 1ms n/a 6.10x 23.77x 1.00x
(100, 1000, 1000) 100000000 3 n/a 54ms 258ms 8ms n/a 7.00x 33.59x 1.00x
nanmin[^5] (1000,) 1000 1 0ms 0ms 0ms 0ms 10.86x 0.17x 0.55x 1.00x
(10000000,) 10000000 1 33ms 5ms 1ms 11ms 3.07x 0.50x 0.09x 1.00x
(100, 100000) 10000000 2 36ms 32ms 1ms 11ms 3.39x 3.03x 0.09x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 32ms 1ms 10ms n/a 3.12x 0.10x 1.00x
(100, 1000, 1000) 100000000 3 n/a 320ms 11ms 102ms n/a 3.12x 0.11x 1.00x
nanquantile (1000,) 1000 1 0ms n/a 0ms 0ms 0.56x n/a 0.21x 1.00x
(10000000,) 10000000 1 114ms n/a 87ms 164ms 0.69x n/a 0.53x 1.00x
(100, 100000) 10000000 2 131ms n/a 115ms 27ms 4.94x n/a 4.33x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a n/a 315ms 19ms n/a n/a 16.51x 1.00x
(100, 1000, 1000) 100000000 3 n/a n/a 3118ms 165ms n/a n/a 18.88x 1.00x
nanstd (1000,) 1000 1 0ms 0ms 0ms 0ms 0.31x 0.02x 0.14x 1.00x
(10000000,) 10000000 1 21ms 20ms 43ms 13ms 1.63x 1.61x 3.39x 1.00x
(100, 100000) 10000000 2 24ms 20ms 43ms 2ms 12.39x 10.18x 22.03x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 20ms 46ms 1ms n/a 14.17x 32.66x 1.00x
(100, 1000, 1000) 100000000 3 n/a 202ms 513ms 13ms n/a 16.08x 40.78x 1.00x
nansum (1000,) 1000 1 0ms 0ms 0ms 0ms 0.46x 0.01x 0.03x 1.00x
(10000000,) 10000000 1 14ms 5ms 19ms 6ms 2.48x 0.94x 3.31x 1.00x
(100, 100000) 10000000 2 22ms 5ms 19ms 1ms 20.47x 4.65x 17.90x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 5ms 20ms 1ms n/a 6.21x 22.95x 1.00x
(100, 1000, 1000) 100000000 3 n/a 53ms 226ms 8ms n/a 6.98x 29.90x 1.00x
nanvar (1000,) 1000 1 0ms 0ms 0ms 0ms 0.32x 0.02x 0.13x 1.00x
(10000000,) 10000000 1 21ms 21ms 44ms 13ms 1.61x 1.65x 3.40x 1.00x
(100, 100000) 10000000 2 25ms 21ms 43ms 2ms 12.62x 10.49x 22.13x 1.00x
(10, 10, 10, 10, 1000) 10000000 5 n/a 20ms 46ms 1ms n/a 14.02x 32.28x 1.00x
(100, 1000, 1000) 100000000 3 n/a 202ms 503ms 13ms n/a 15.68x 38.98x 1.00x

[^1][^2][^3][^4][^5][^6]

[^1]: Benchmarks were run on a Mac M3 Max laptop in September 2024 on numbagg's HEAD, pandas 2.2.2, bottleneck 1.4.0 numpy 2.0.1, with python numbagg/test/run_benchmarks.py -- --benchmark-max-time=10. They run in CI, though GHA's low CPU count means we don't see the full benefits of parallelization.

[^2]: While we separate the setup and the running of the functions, pandas still needs to do some work to create its result dataframe, and numbagg does some checks in python which bottleneck does in C or doesn't do. So use benchmarks on larger arrays for our summary so we can focus on the computational speed, which doesn't asymptote away. Any contributions to improve the benchmarks are welcome.

[^3]: In some instances, a library won't have the exact function — for example, pandas doesn't have an equivalent move_exp_nancount function, so we use its sum function on an array of 1s. Similarly for group_nansum_of_squares, we use two separate operations.

[^4]: anynan & allnan are also functions in numbagg, but not listed here as they require a different benchmark setup.

[^5]: This function is not currently parallelized, so exhibits worse performance on parallelizable arrays.

[^6]: Matrix functions (correlation/covariance matrices) use different array shapes in the summary benchmark: their largest 2D shape appears in the 1D column and their largest 3D shape appears in the 2D column to demonstrate parallelization across multiple independent matrices.

Axis parameter behavior

The axis parameter in numbagg has three different behaviors depending on the function type:

Aggregation functions

Includes: nanmean, nansum, nanstd, nanvar, nanmin, nanmax, nancount, nanargmin, nanargmax, nanquantile, allnan, anynan

  • Specify dimensions to reduce/aggregate over
  • Support multiple axes, e.g. axis=(0, 1)
  • Remove the specified dimensions from output shape
# Example with 3D array
arr = np.random.rand(4, 3, 5)
result = nb.nanmean(arr, axis=(0, 2))  # Reduces over dimensions 0 and 2
# result.shape is (3,)

Moving window functions

Includes: move_mean, move_sum, move_std, move_var, move_corr, move_cov, and exponential variants like move_exp_nanmean

  • Specify the dimension along which the window moves
  • Single axis only
  • Preserve input shape
# Moving average along axis 1
arr = np.random.rand(4, 3, 5)
result = nb.move_mean(arr, window=2, axis=1)
# result.shape is (4, 3, 5) - same as input

Grouped functions

Includes: group_nanmean, group_nansum, group_nanstd, group_nanvar, group_nanmin, group_nanmax, and others

  • Specify dimension along which groups are defined
  • Single axis only
  • Group consecutive identical labels along the axis
# Group operations along axis 0
arr = np.random.rand(4, 3, 5)
labels = np.array([0, 0, 1, 1])  # Groups for axis 0
result = nb.group_nanmean(arr, labels, axis=0)
# result.shape is (2, 3, 5) - 2 groups along axis 0

Aggregation functions are compatible with NumPy's axis parameter behavior, while moving window and grouped functions provide functionality not available in NumPy.

Matrix functions

Includes: nancorrmatrix, nancovmatrix (static), and move_corrmatrix, move_covmatrix, move_exp_nancorrmatrix, move_exp_nancovmatrix (moving)

Matrix functions use different dimension conventions:

  • Static matrix functions (nancorrmatrix, nancovmatrix): expect (..., vars, obs)(..., vars, vars)
  • Moving matrix functions (move_corrmatrix, move_covmatrix, move_exp_nancorrmatrix, move_exp_nancovmatrix): expect (..., obs, vars)(..., obs, vars, vars)

The different conventions follow a simple principle: dimensions should only be added or removed at the end of the array shape. Static functions both remove (the obs dimension) and add (a second vars dimension), so they need obs at the end. Moving functions only add (a second vars dimension), so they can keep the natural time-series ordering with obs before vars.

Example implementation

Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation functions accelerated by Numba. All the hard work is done by Numba's JIT compiler and NumPy's gufunc machinery (as wrapped by Numba).

For example, here is how we wrote nansum:

import numpy as np
from numbagg.decorators import ndreduce


@ndreduce.wrap()
def nansum(a):
    asum = 0.0
    for ai in a.flat:
        if not np.isnan(ai):
            asum += ai
    return asum

Implementation details

Numbagg includes somewhat awkward workarounds for features missing from NumPy/Numba:

  • It implements its own cache for functions wrapped by Numba's guvectorize, because that decorator is rather slow.
  • It does its own handling of array transposes to handle the axis argument in reduction functions.
  • It rewrites plain functions into gufuncs, to allow writing a traditional function while retaining the multidimensional advantages of gufuncs.

Already some of the ideas here have flowed upstream to numba (for example, an axis parameter), and we hope that others will follow.

License

3-clause BSD. Includes portions of Bottleneck, which is distributed under a Simplified BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numbagg-0.9.4.tar.gz (141.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

numbagg-0.9.4-py3-none-any.whl (77.5 kB view details)

Uploaded Python 3

File details

Details for the file numbagg-0.9.4.tar.gz.

File metadata

  • Download URL: numbagg-0.9.4.tar.gz
  • Upload date:
  • Size: 141.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for numbagg-0.9.4.tar.gz
Algorithm Hash digest
SHA256 4aaddc7ca306c38e991f8b812d129a81f31cb77a066282d1e0b18cea5c126250
MD5 d3370df00eeb67b5564fcbc665817f26
BLAKE2b-256 315c0b84cf3e2dc71fc9061bdf9db9c8d0e8ea0eb079b8c98f526831d0d2c1c1

See more details on using hashes here.

Provenance

The following attestation bundles were made for numbagg-0.9.4.tar.gz:

Publisher: pypi-release.yaml on numbagg/numbagg

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numbagg-0.9.4-py3-none-any.whl.

File metadata

  • Download URL: numbagg-0.9.4-py3-none-any.whl
  • Upload date:
  • Size: 77.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for numbagg-0.9.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4f48276333fae856810873122d77aa75fb2d33f9ffe7888c1cfc86209117408f
MD5 f094e0863b82b2dd5c93e2a43c1eb1cb
BLAKE2b-256 aed3ff8f1b9968aa4dcd1da1880322ed492314cc920998182e549b586c895a17

See more details on using hashes here.

Provenance

The following attestation bundles were made for numbagg-0.9.4-py3-none-any.whl:

Publisher: pypi-release.yaml on numbagg/numbagg

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page