Skip to main content

Fast N-dimensional aggregation functions with Numba

Project description

Numbagg: Fast N-dimensional aggregation functions with Numba

GitHub Workflow CI Status PyPI Version

Fast, flexible N-dimensional array functions written with Numba and NumPy's generalized ufuncs.

Currently accelerated functions:

  • Array functions: allnan, anynan, count, nanargmax, nanargmin, nanmax, nanmean, nanstd, nanvar, nanmin, nansum, nanquantile, ffill, bfill.
  • Grouped functions: group_nanall, group_nanany, group_nanargmax, group_nanargmin, group_nancount, group_nanfirst, group_nanlast, group_nanmax, group_nanmean, group_nanmin, group_nanprod, group_nanstd, group_nansum, group_nansum_of_squares, group_nanvar.
  • Moving window functions listed below
  • Exponentially weighted moving functions listed below

Why use numba?

Performance

  • Much faster than pandas for almost every function — 2-20x
  • About the same speed as bottleneck on a single calculation
  • Much faster than bottleneck — 4-7x — when parallelizing with multiple cores — for example, calculating over each row on an array with 10 rows.
  • ...though numbagg's functions are JIT compiled, so they're much slower on their first run

Versatility

  • More functions (though bottleneck has some functions we don't have, and pandas' functions have many more parameters)
  • Fast functions work for >3 dimensions. Functions take an arbitrary axis or tuple of axes to calculate over
  • Written in numba — way less code, simple to inspect, simple to improve

Benchmarks

2D

Array of shape (1, 10000000), over the final axis

func numbagg pandas bottleneck pandas_ratio bottleneck_ratio
bfill 17ms 504ms 20ms 29.10x 1.13x
ffill 18ms 489ms 19ms 27.88x 1.06x
move_corr 48ms 922ms n/a 19.23x n/a
move_cov 42ms 653ms n/a 15.50x n/a
move_mean 32ms 131ms 27ms 4.12x 0.86x
move_std 24ms 190ms 38ms 7.86x 1.57x
move_sum 31ms 118ms 27ms 3.83x 0.88x
move_var 24ms 177ms 35ms 7.41x 1.48x
move_exp_nancorr 69ms 455ms n/a 6.63x n/a
move_exp_nancount 32ms 83ms n/a 2.59x n/a
move_exp_nancov 51ms 283ms n/a 5.58x n/a
move_exp_nanmean 33ms 72ms n/a 2.17x n/a
move_exp_nanstd 48ms 95ms n/a 1.98x n/a
move_exp_nansum 32ms 64ms n/a 1.97x n/a
move_exp_nanvar 42ms 82ms n/a 1.97x n/a
nanquantile 218ms 680ms n/a 3.12x n/a

ND

Array of shape (100, 1000, 1000), over the final axis

func numbagg pandas bottleneck pandas_ratio bottleneck_ratio
bfill 38ms n/a 244ms n/a 6.38x
ffill 50ms n/a 221ms n/a 4.44x
move_corr 130ms n/a n/a n/a n/a
move_cov 69ms n/a n/a n/a n/a
move_mean 51ms n/a 308ms n/a 6.06x
move_std 106ms n/a 372ms n/a 3.51x
move_sum 59ms n/a 287ms n/a 4.90x
move_var 44ms n/a 370ms n/a 8.50x
move_exp_nancorr 136ms n/a n/a n/a n/a
move_exp_nancount 119ms n/a n/a n/a n/a
move_exp_nancov 124ms n/a n/a n/a n/a
move_exp_nanmean 158ms n/a n/a n/a n/a
move_exp_nanstd 94ms n/a n/a n/a n/a
move_exp_nansum 215ms n/a n/a n/a n/a
move_exp_nanvar 160ms n/a n/a n/a n/a
nanquantile 2179ms n/a n/a n/a n/a

[^1][^2][^3]

[^1]: Benchmarks were run on a Mac M1 laptop in October 2023 on numbagg's HEAD, pandas 2.1.1, bottleneck 1.3.7. They're also run in CI, though without demonstrating the benefits of parallelization given GHA's CPU count.

[^2]: While we separate the setup and the running of the functions, pandas still needs to do some work to create its result dataframe, and numbagg does some checks in python which bottleneck does in C or doesn't do. So we focus on the benchmarks for larger arrays in order to reduce that impact. Any contributions to improve the benchmarks are welcome.

[^3]: Pandas doesn't have an equivalent move_exp_nancount function, so this is compared to a function which uses its sum function on an array of 1s.

Full benchmarks

All

func shape size numbagg pandas bottleneck pandas_ratio bottleneck_ratio
bfill (1, 1000) 1000 0ms 0ms 0ms 3.18x 0.03x
(10, 1000000) 10000000 4ms 74ms 20ms 20.56x 5.64x
(1, 10000000) 10000000 17ms 504ms 20ms 29.10x 1.13x
(10, 10, 10, 10, 1000) 10000000 4ms n/a 21ms n/a 5.35x
(100, 1000, 1000) 100000000 38ms n/a 244ms n/a 6.38x
ffill (1, 1000) 1000 0ms 0ms 0ms 2.52x 0.01x
(10, 1000000) 10000000 4ms 73ms 19ms 17.64x 4.50x
(1, 10000000) 10000000 18ms 489ms 19ms 27.88x 1.06x
(10, 10, 10, 10, 1000) 10000000 4ms n/a 19ms n/a 4.60x
(100, 1000, 1000) 100000000 50ms n/a 221ms n/a 4.44x
move_corr (1, 1000) 1000 0ms 0ms n/a 5.04x n/a
(10, 1000000) 10000000 10ms 927ms n/a 89.63x n/a
(1, 10000000) 10000000 48ms 922ms n/a 19.23x n/a
(10, 10, 10, 10, 1000) 10000000 10ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 130ms n/a n/a n/a n/a
move_cov (1, 1000) 1000 0ms 0ms n/a 4.64x n/a
(10, 1000000) 10000000 9ms 694ms n/a 76.55x n/a
(1, 10000000) 10000000 42ms 653ms n/a 15.50x n/a
(10, 10, 10, 10, 1000) 10000000 9ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 69ms n/a n/a n/a n/a
move_mean (1, 1000) 1000 0ms 0ms 0ms 1.43x 0.02x
(10, 1000000) 10000000 7ms 134ms 27ms 19.67x 3.94x
(1, 10000000) 10000000 32ms 131ms 27ms 4.12x 0.86x
(10, 10, 10, 10, 1000) 10000000 5ms n/a 28ms n/a 5.32x
(100, 1000, 1000) 100000000 51ms n/a 308ms n/a 6.06x
move_std (1, 1000) 1000 0ms 0ms 0ms 1.69x 0.05x
(10, 1000000) 10000000 5ms 185ms 36ms 33.95x 6.56x
(1, 10000000) 10000000 24ms 190ms 38ms 7.86x 1.57x
(10, 10, 10, 10, 1000) 10000000 5ms n/a 37ms n/a 8.06x
(100, 1000, 1000) 100000000 106ms n/a 372ms n/a 3.51x
move_sum (1, 1000) 1000 0ms 0ms 0ms 1.64x 0.02x
(10, 1000000) 10000000 7ms 125ms 26ms 17.60x 3.68x
(1, 10000000) 10000000 31ms 118ms 27ms 3.83x 0.88x
(10, 10, 10, 10, 1000) 10000000 6ms n/a 26ms n/a 4.29x
(100, 1000, 1000) 100000000 59ms n/a 287ms n/a 4.90x
move_var (1, 1000) 1000 0ms 0ms 0ms 1.55x 0.05x
(10, 1000000) 10000000 5ms 187ms 35ms 39.13x 7.37x
(1, 10000000) 10000000 24ms 177ms 35ms 7.41x 1.48x
(10, 10, 10, 10, 1000) 10000000 20ms n/a 37ms n/a 1.90x
(100, 1000, 1000) 100000000 44ms n/a 370ms n/a 8.50x
move_exp_nancorr (1, 1000) 1000 0ms 0ms n/a 6.90x n/a
(10, 1000000) 10000000 13ms 459ms n/a 35.88x n/a
(1, 10000000) 10000000 69ms 455ms n/a 6.63x n/a
(10, 10, 10, 10, 1000) 10000000 14ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 136ms n/a n/a n/a n/a
move_exp_nancount (1, 1000) 1000 0ms 0ms n/a 1.43x n/a
(10, 1000000) 10000000 7ms 73ms n/a 9.82x n/a
(1, 10000000) 10000000 32ms 83ms n/a 2.59x n/a
(10, 10, 10, 10, 1000) 10000000 6ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 119ms n/a n/a n/a n/a
move_exp_nancov (1, 1000) 1000 0ms 0ms n/a 6.49x n/a
(10, 1000000) 10000000 10ms 319ms n/a 31.23x n/a
(1, 10000000) 10000000 51ms 283ms n/a 5.58x n/a
(10, 10, 10, 10, 1000) 10000000 10ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 124ms n/a n/a n/a n/a
move_exp_nanmean (1, 1000) 1000 0ms 0ms n/a 1.26x n/a
(10, 1000000) 10000000 6ms 78ms n/a 12.63x n/a
(1, 10000000) 10000000 33ms 72ms n/a 2.17x n/a
(10, 10, 10, 10, 1000) 10000000 7ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 158ms n/a n/a n/a n/a
move_exp_nanstd (1, 1000) 1000 0ms 0ms n/a 2.09x n/a
(10, 1000000) 10000000 10ms 101ms n/a 9.65x n/a
(1, 10000000) 10000000 48ms 95ms n/a 1.98x n/a
(10, 10, 10, 10, 1000) 10000000 10ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 94ms n/a n/a n/a n/a
move_exp_nansum (1, 1000) 1000 0ms 0ms n/a 1.37x n/a
(10, 1000000) 10000000 7ms 66ms n/a 9.57x n/a
(1, 10000000) 10000000 32ms 64ms n/a 1.97x n/a
(10, 10, 10, 10, 1000) 10000000 6ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 215ms n/a n/a n/a n/a
move_exp_nanvar (1, 1000) 1000 0ms 0ms n/a 1.39x n/a
(10, 1000000) 10000000 9ms 91ms n/a 10.55x n/a
(1, 10000000) 10000000 42ms 82ms n/a 1.97x n/a
(10, 10, 10, 10, 1000) 10000000 9ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 160ms n/a n/a n/a n/a
nanquantile (1, 1000) 1000 0ms 0ms n/a 3.28x n/a
(10, 1000000) 10000000 214ms 257ms n/a 1.20x n/a
(1, 10000000) 10000000 218ms 680ms n/a 3.12x n/a
(10, 10, 10, 10, 1000) 10000000 218ms n/a n/a n/a n/a
(100, 1000, 1000) 100000000 2179ms n/a n/a n/a n/a

Example implementation

Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation functions accelerated by Numba. All the hard work is done by Numba's JIT compiler and NumPy's gufunc machinery (as wrapped by Numba).

For example, here is how we wrote nansum:

import numpy as np
from numbagg.decorators import ndreduce

@ndreduce.wrap()
def nansum(a):
    asum = 0.0
    for ai in a.flat:
        if not np.isnan(ai):
            asum += ai
    return asum

Implementation details

Numbagg includes somewhat awkward workarounds for features missing from NumPy/Numba:

  • It implements its own cache for functions wrapped by Numba's guvectorize, because that decorator is rather slow.
  • It does its own handling of array transposes to handle the axis argument in reduction functions.
  • It rewrites plain functions into gufuncs, to allow writing a traditional function while retaining the multidimensional advantages of gufuncs.

Already some of the ideas here have flowed upstream to numba (for example, an axis parameter), and we hope that others will follow.

License

3-clause BSD. Includes portions of Bottleneck, which is distributed under a Simplified BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numbagg-0.6.6.tar.gz (41.5 kB view hashes)

Uploaded Source

Built Distribution

numbagg-0.6.6-py3-none-any.whl (37.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page