Skip to main content

NVIDIA GPU tools

Project description

It provides information about GPUs and their availability for computation.

Often we want to train a ML model on one of GPUs installed on a multi-GPU machine. Since TensorFlow allocates all memory, only one such process can use the GPU at a time. Unfortunately nvidia-smi provides only a text interface with information about GPUs. This packages wraps it with an easier to use CLI and Python interface.

It’s a quick and dirty solution calling nvidia-smi and parsing its output. We can take one or more GPUs availabile for computation based on relative memory usage, ie. it is OK with Xorg taking a few MB.

Installing

pip install nvgpu

Usage examples

Command-line interface:

# grab all available GPUs
CUDA_VISIBLE_DEVICES=$(nvgpu available)

# grab at most available GPU
CUDA_VISIBLE_DEVICES=$(nvgpu available -l 1)

Python API:

import nvgpu

nvgpu.available_gpus()
# ['0', '2']

nvgpu.gpu_info()
[{'index': '0',
  'mem_total': 8119,
  'mem_used': 7881,
  'mem_used_percent': 97.06860450794433,
  'type': 'GeForce GTX 1070',
  'uuid': 'GPU-3aa99ee6-4a9f-470e-3798-70aaed942689'},
 {'index': '1',
  'mem_total': 11178,
  'mem_used': 10795,
  'mem_used_percent': 96.57362676686348,
  'type': 'GeForce GTX 1080 Ti',
  'uuid': 'GPU-60410ded-5218-7b06-9c7a-124b77a22447'},
 {'index': '2',
  'mem_total': 11178,
  'mem_used': 10789,
  'mem_used_percent': 96.51994990159241,
  'type': 'GeForce GTX 1080 Ti',
  'uuid': 'GPU-d0a77bd4-cc70-ca82-54d6-4e2018cfdca6'},
  ...
]

Author

TODO

  • order GPUs by priority (decreasing power, decreasing free memory)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvgpu-0.1.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

nvgpu-0.1.1-py2.py3-none-any.whl (5.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file nvgpu-0.1.1.tar.gz.

File metadata

  • Download URL: nvgpu-0.1.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nvgpu-0.1.1.tar.gz
Algorithm Hash digest
SHA256 db45cb17013e52b70a80aa7e819284f4e13b8e1c6a9fc277d11ae37242a4411c
MD5 c4e07bd0844277033da9a27493f743b1
BLAKE2b-256 046d465f77bbb26c81f5b7ebf8f1d9df48f4b37b4f320f08bd9d7a570ae3fa2d

See more details on using hashes here.

File details

Details for the file nvgpu-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nvgpu-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e6a5811c587af59df5f7f5b24a4438597b4fb14b829e9dd7a8c7f20aa1c6af63
MD5 82221654d9a688df477bb84783be4fd9
BLAKE2b-256 874408c09c1e1cea484e429123b84acfff086786d9d2fd59ddc01ead6ae8adae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page