Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

ONNX released packages are published in PyPi.

pip install onnx # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

Detailed install instructions, including Common Build Options and Common Errors can be found here

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.18.0.tar.gz (12.6 MB view details)

Uploaded Source

Built Distributions

onnx-1.18.0-cp313-cp313t-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.13tWindows x86-64

onnx-1.18.0-cp313-cp313t-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.13tmacOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.18.0-cp313-cp313-win_arm64.whl (15.8 MB view details)

Uploaded CPython 3.13Windows ARM64

onnx-1.18.0-cp313-cp313-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.13Windows x86-64

onnx-1.18.0-cp313-cp313-win32.whl (15.7 MB view details)

Uploaded CPython 3.13Windows x86

onnx-1.18.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

onnx-1.18.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

onnx-1.18.0-cp313-cp313-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.13macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.18.0-cp312-cp312-win_arm64.whl (15.8 MB view details)

Uploaded CPython 3.12Windows ARM64

onnx-1.18.0-cp312-cp312-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.12Windows x86-64

onnx-1.18.0-cp312-cp312-win32.whl (15.7 MB view details)

Uploaded CPython 3.12Windows x86

onnx-1.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

onnx-1.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

onnx-1.18.0-cp312-cp312-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.12macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.18.0-cp311-cp311-win_arm64.whl (15.8 MB view details)

Uploaded CPython 3.11Windows ARM64

onnx-1.18.0-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11Windows x86-64

onnx-1.18.0-cp311-cp311-win32.whl (15.7 MB view details)

Uploaded CPython 3.11Windows x86

onnx-1.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

onnx-1.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

onnx-1.18.0-cp311-cp311-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.11macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.18.0-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10Windows x86-64

onnx-1.18.0-cp310-cp310-win32.whl (15.7 MB view details)

Uploaded CPython 3.10Windows x86

onnx-1.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

onnx-1.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

onnx-1.18.0-cp310-cp310-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.10macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.18.0-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9Windows x86-64

onnx-1.18.0-cp39-cp39-win32.whl (15.7 MB view details)

Uploaded CPython 3.9Windows x86

onnx-1.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

onnx-1.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

onnx-1.18.0-cp39-cp39-macosx_12_0_universal2.whl (18.3 MB view details)

Uploaded CPython 3.9macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.18.0.tar.gz.

File metadata

  • Download URL: onnx-1.18.0.tar.gz
  • Upload date:
  • Size: 12.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0.tar.gz
Algorithm Hash digest
SHA256 3d8dbf9e996629131ba3aa1afd1d8239b660d1f830c6688dd7e03157cccd6b9c
MD5 5d609618b873aefba483476b7cd14247
BLAKE2b-256 3d60e56e8ec44ed34006e6d4a73c92a04d9eea6163cc12440e35045aec069175

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 a69afd0baa372162948b52c13f3aa2730123381edf926d7ef3f68ca7cec6d0d0
MD5 6b4b9bd9be296636499fc3a001564fe8
BLAKE2b-256 84dd6abe5d7bd23f5ed3ade8352abf30dff1c7a9e97fc1b0a17b5d7c726e98a9

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313t-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp313-cp313t-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 2f4d37b0b5c96a873887652d1cbf3f3c70821b8c66302d84b0f0d89dd6e47653
MD5 d73b28547a3db96e06c38c8060d62519
BLAKE2b-256 70f3499e53dd41fa7302f914dd18543da01e0786a58b9a9d347497231192001f

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 6f91930c1a284135db0f891695a263fc876466bf2afbd2215834ac08f600cfca
MD5 28cdc0982c1c212de58737efcb2198db
BLAKE2b-256 0ab16fd41b026836df480a21687076e0f559bc3ceeac90f2be8c64b4a7a1f332

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 230b0fb615e5b798dc4a3718999ec1828360bc71274abd14f915135eab0255f1
MD5 c7241ba9d9794b57977e109b6bff0413
BLAKE2b-256 6495253451a751be32b6173a648b68f407188009afa45cd6388780c330ff5d5d

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: onnx-1.18.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 6c093ffc593e07f7e33862824eab9225f86aa189c048dd43ffde207d7041a55f
MD5 e3ff2f2584accb562db026ee144aed22
BLAKE2b-256 760d01a95edc2cef6ad916e04e8e1267a9286f15b55c90cce5d3cdeb359d75d6

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c137eecf6bc618c2f9398bcc381474b55c817237992b169dfe728e169549e8f
MD5 2452d0148d9d2a602698387f795e4f1e
BLAKE2b-256 12bb471da68df0364f22296456c7f6becebe0a3da1ba435cdb371099f516da6e

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8521544987d713941ee1e591520044d35e702f73dc87e91e6d4b15a064ae813d
MD5 c2547245784ee5b002fea8423012f10a
BLAKE2b-256 05e8762b5fb5ed1a2b8e9a4bc5e668c82723b1b789c23b74e6b5a3356731ae4e

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp313-cp313-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp313-cp313-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 030d9f5f878c5f4c0ff70a4545b90d7812cd6bfe511de2f3e469d3669c8cff95
MD5 fa4bacdc0d7be5e541a157ff8b7ecf26
BLAKE2b-256 45da9fb8824513fae836239276870bfcc433fa2298d34ed282c3a47d3962561b

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 911b37d724a5d97396f3c2ef9ea25361c55cbc9aa18d75b12a52b620b67145af
MD5 71fe748669c44c8d1cf8bf374e1ce3f7
BLAKE2b-256 a166bbc4ffedd44165dcc407a51ea4c592802a5391ce3dc94aa5045350f64635

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 102c04edc76b16e9dfeda5a64c1fccd7d3d2913b1544750c01d38f1ac3c04e05
MD5 d9eeba57bcaa6dce9f815ea0ea256fe5
BLAKE2b-256 e892048ba8fafe6b2b9a268ec2fb80def7e66c0b32ab2cae74de886981f05a27

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: onnx-1.18.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ee159b41a3ae58d9c7341cf432fc74b96aaf50bd7bb1160029f657b40dc69715
MD5 417f1ade530f7293d9bb5038e0938571
BLAKE2b-256 6a4d2c253a36070fb43f340ff1d2c450df6a9ef50b938adcd105693fee43c4ee

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99afac90b4cdb1471432203c3c1f74e16549c526df27056d39f41a9a47cfb4af
MD5 e72d522e921094100ad4fa3fb75270b4
BLAKE2b-256 112325ec2ba723ac62b99e8fed6d7b59094dadb15e38d4c007331cc9ae3dfa5f

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4da451bf1c5ae381f32d430004a89f0405bc57a8471b0bddb6325a5b334aa40
MD5 8f1529dcdf89d06eeefcdfe5e751405a
BLAKE2b-256 1e77ba50a903a9b5e6f9be0fa50f59eb2fca4a26ee653375408fbc72c3acbf9f

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 521bac578448667cbb37c50bf05b53c301243ede8233029555239930996a625b
MD5 69ca15e9ba83ddfae64e4c2561d713aa
BLAKE2b-256 a7fe16228aca685392a7114625b89aae98b2dc4058a47f0f467a376745efe8d0

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 aa1b7483fac6cdec26922174fc4433f8f5c2f239b1133c5625063bb3b35957d0
MD5 191df1141da8429165c6e6a2445f31fb
BLAKE2b-256 6cf09e31f4b4626d60f1c034f71b411810bc9fafe31f4e7dd3598effd1b50e05

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a5810194f0f6be2e58c8d6dedc6119510df7a14280dd07ed5f0f0a85bd74816a
MD5 6a2c83ece5b4b54d6eced096417f8d51
BLAKE2b-256 44b0435fd764011911e8f599e3361f0f33425b1004662c1ea33a0ad22e43db2d

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.18.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4c8c4bbda760c654e65eaffddb1a7de71ec02e60092d33f9000521f897c99be9
MD5 f747962c55a32304655fcfb953f9eee1
BLAKE2b-256 b04e70943125729ce453271a6e46bb847b4a612496f64db6cbc6cb1f49f41ce1

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6acafb3823238bbe8f4340c7ac32fb218689442e074d797bee1c5c9a02fdae75
MD5 f4a50361d181db9836341a87a8dd75a2
BLAKE2b-256 cf035eb5e9ef446ed9e78c4627faf3c1bc25e0f707116dd00e9811de232a8df5

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73160799472e1a86083f786fecdf864cf43d55325492a9b5a1cfa64d8a523ecc
MD5 cdaf888cf38efae9414e5c6bb9c4189c
BLAKE2b-256 023a56475a111120d1e5d11939acbcbb17c92198c8e64a205cd68e00bdfd8a1f

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 735e06d8d0cf250dc498f54038831401063c655a8d6e5975b2527a4e7d24be3e
MD5 5f25afed7a559295504c898fa163043c
BLAKE2b-256 ed3aa336dac4db1eddba2bf577191e5b7d3e4c26fcee5ec518a5a5b11d13540d

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9235b3493951e11e75465d56f4cd97e3e9247f096160dd3466bfabe4cbc938bc
MD5 0e8f6d8df9357a0d99c2cd071be9df0f
BLAKE2b-256 a6f9e766a3b85b7651ddfc5f9648e0e9dc24e88b7e88ea7f8c23187530e818ea

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.18.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e03071041efd82e0317b3c45433b2f28146385b80f26f82039bc68048ac1a7a0
MD5 5f5cd7af4341c9d2594dc9d4b0645190
BLAKE2b-256 4252dc166de41a5f72738b0bdfb2a19e0ebe4743cf3ecc9ae381ea3425bcb332

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfb1f271b1523b29f324bfd223f6a4cfbdc5a2f2f16e73563671932d33663365
MD5 55aa7ff8ba65ab100375fbc3ef003477
BLAKE2b-256 5852fa649429016c5790f68c614cdebfbefd3e72ba1c458966305297d540f713

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e189652dad6e70a0465035c55cc565c27aa38803dd4f4e74e4b952ee1c2de94b
MD5 82877eb59e9c0ac632d5d4a170ab328d
BLAKE2b-256 045b3cfd183961a0a872fe29c95f8d07264890ec65c75c94b99a4dabc950df29

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 4a3b50d94620e2c7c1404d1d59bc53e665883ae3fecbd856cc86da0639fd0fc3
MD5 84a8f16523eaae0565248453d04f460d
BLAKE2b-256 8ee3ab8a09c0af43373e0422de461956a1737581325260659aeffae22a7dad18

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.18.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a3ff1735f99589be4f311eb586f2b949998614a82fb6261ae6af5a29879b9375
MD5 469f4243fc710b61716939e1a9bbbcab
BLAKE2b-256 5041a46e4701203c832af815eb502b101abc4bfc84b189b453e60fe267fafe9b

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.18.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2bd5c0c55669b6d8f12e859cc27f3a631fe58730871b21f001527e1d56219e2a
MD5 094e0791f97673b69d8eae22b917eed0
BLAKE2b-256 83567df8f208de6c0bf678082f2fed291ad73da2bc68e1372c7ab4b62da4bfb6

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7839bf2adb494e46ccf375a7936b5d9e241b63e1a84254f3eb2e2e184e3292c8
MD5 5334103795f447509adf9c7c98d137af
BLAKE2b-256 9d05545c0b2c67421cac9573301e6a3e3d0ddf7c7bc4d1ae09781285cc996f16

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc22abacfb0d3cd024d6ab784cb5eb5aca9c966a791e8e13b1a4ecb93ddb47d3
MD5 6007282915072023e4353c4d3836dd28
BLAKE2b-256 067a7eca4c27fa96fad2ec76fddc65a69d56c7d898134dddd82fa3331242f927

See more details on using hashes here.

File details

Details for the file onnx-1.18.0-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

  • Download URL: onnx-1.18.0-cp39-cp39-macosx_12_0_universal2.whl
  • Upload date:
  • Size: 18.3 MB
  • Tags: CPython 3.9, macOS 12.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for onnx-1.18.0-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 a186b1518450e04dc3679da315a663a56429418e7ccfd947d721de9bd710b0ea
MD5 198905e9f20b6018f37753a02dabd17f
BLAKE2b-256 49a21a6bf6a80b3690f15a847d76b94494c03e37853c99452bc3c8602c9e4e2b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page