Skip to main content

Federated Learning for the Edge

Project description

Welcome to Intel® Open Federated Learning

PyPI - Python Version Jenkins Documentation Status PyPI version License Citation

Federated learning is a distributed machine learning approach that enables organizations to collaborate on machine learning projects without sharing sensitive data, such as, patient records, financial data, or classified secrets (Sheller MJ, et al., 2020; Sheller MJ, et al., 2019; Yang Y, et al., 2019; McMahan HB, et al., 2016).

The basic premise behind federated learning is that the model moves to meet the data rather than the data moving to meet the model. Therefore, the minimum data movement needed across the federation is solely the model parameters and their updates.

Open Federated Learning (OpenFL) is a Python 3 project developed by Intel Labs and Intel Internet of Things Group.

Federated Learning

Getting started

Check out our online documentation to launch your first federation. The quickest way to test OpenFL is through our Jupyter Notebook tutorials.

For more questions, please consider joining our Slack channel.

Requirements

  • OS: Tested on Ubuntu Linux 16.04 and 18.04.
  • Python 3.6+ with a Python virtual environment (e.g. conda)
  • TensorFlow 2+ or PyTorch 1.6+ (depending on your training requirements). OpenFL is designed to easily support other frameworks as well.

fx commandline interface

License

This project is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.

Resources:

Citation

@misc{reina2021openfl,
      title={OpenFL: An open-source framework for Federated Learning}, 
      author={G Anthony Reina and Alexey Gruzdev and Patrick Foley and Olga Perepelkina and Mansi Sharma and Igor Davidyuk and Ilya Trushkin and Maksim Radionov and Aleksandr Mokrov and Dmitry Agapov and Jason Martin and Brandon Edwards and Micah J. Sheller and Sarthak Pati and Prakash Narayana Moorthy and Shih-han Wang and Prashant Shah and Spyridon Bakas},
      year={2021},
      eprint={2105.06413},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Support

Please report questions, issues and suggestions using:

Relation to OpenFederatedLearning and the Federated Tumor Segmentation (FeTS) Initiative

This project builds on the Open Federated Learning framework that was developed as part of a collaboration between Intel and the University of Pennsylvania (UPenn) for federated learning. It describes Intel’s commitment in supporting the grant awarded to the Center for Biomedical Image Computing and Analytics (CBICA) at UPenn (PI: S. Bakas) from the Informatics Technology for Cancer Research (ITCR) program of the National Cancer Institute (NCI) of the National Institutes of Health (NIH), for the development of the Federated Tumor Segmentation (FeTS, www.fets.ai) platform (grant award number: U01-CA242871).

FeTS is an exciting, real-world medical FL platform, and we are honored to be collaborating with UPenn in leading a federation of international collaborators. The original OpenFederatedLearning project and OpenFL are designed to serve as the backend for the FeTS platform, and OpenFL developers and researchers continue to work very closely with UPenn on the FeTS project. The FeTS-AI/Front-End shows how UPenn and Intel have integrated UPenn’s medical AI expertise with Intel’s framework to create a federated learning solution for medical imaging.

Although initially developed for use in medical imaging, this project is designed to be agnostic to the use-case, the industry, and the machine learning framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

openfl-1.1-py3-none-manylinux1_x86_64.whl (321.3 kB view details)

Uploaded Python 3

File details

Details for the file openfl-1.1-py3-none-manylinux1_x86_64.whl.

File metadata

  • Download URL: openfl-1.1-py3-none-manylinux1_x86_64.whl
  • Upload date:
  • Size: 321.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.1.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/2.7.9

File hashes

Hashes for openfl-1.1-py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 963ad69a31ef1f0d3793bec6bea11c2c3deba7a67ff3a6fb08df7fab2c2a9a1c
MD5 b9d1321a461a82db6539083aef163b5e
BLAKE2b-256 74867cb33e7014e5455b8f0d7305623c866f2a7d6f80bc889e7c90504f4e3008

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page